ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

SA. Основные положения МКТ. Строение вещества. Молекула

Как правило, мы познаем мир через так называемые макроскопические тела (греч. "макрос" – большой). Это все тела, которые нас окружают: дома, машины, вода в стакане, вода в океане и т.д. Нас интересовало, что происходит с этими телами и вокруг них. Теперь нас будет интересовать также и то, что происходит внутри тел. На этот вопрос нам поможет ответить раздел физики, который называется МКТ.
МКТ – молекулярно-кинетическая теория. Она объясняет физические явления и свойства тел с точки зрения их внутреннего микроскопического строения. В основе этой теории лежат три утверждения:

Все тела состоят из малых частиц, между которыми есть промежутки.
Частицы тел постоянно и беспорядочно движутся.
Частицы тел взаимодействуют друг с другом: притягиваются и отталкиваются.

Эти утверждения называются основными положениями МКТ. Все они подтверждены многочисленными экспериментами.

При макроскопическом подходе нас интересуют сами тела: их размеры, объем, масса, энергия и так далее. Взгляните на рисунок слева. Например, макроскопически изучая водяные брызги, мы будем измерять их размеры, объем, массу.

При микроскопическом же подходе нас тоже интересуют размеры, объем, масса и энергия. Однако уже не самих тел, а тех частиц, из которых они состоят: молекул, ионов и атомов. Именно это и символизирует верхний рисунок. Но не следует думать, что молекулы, ионы и атомы можно увидеть в лупу. Этот рисунок – всего лишь художественная гипербола. Увидеть эти частицы можно лишь при помощи особых, так называемых электронных, микроскопов.

МКТ не всегда была научной теорией. Зародившись еще до Нашей эры, молекулярная (или, как ее называли прежде, – атомическая) теория оставалась лишь удобной гипотезой больше двух тысяч лет! И только в XX веке она превращается в полноправную физическую теорию. Вот как говорит об этом знаменитый физик Э.Резерфорд:

"Ни один физик или химик не может закрыть глаза перед той огромной ролью, какую в настоящее время играет в науке атомическая гипотеза. … К концу XIX столетия ее идеи пропитали очень большую область физики и химии. Представление об атомах делалось все более и более конкретным. … Простота и польза атомических воззрений при объяснении самых различных явлений физики и химии, естественно, подняли авторитет этой теории в глазах научных работников. Появилась тенденция рассматривать атомическую гипотезу уже не как полезную рабочую гипотезу, для которой очень трудно найти непосредственные и убедительные доказательства, а как один из твердо обоснованных фактов природы.

Но также не было и недостатка в ученых и философах, которые указывали на необоснованность этой теории, на которой, однако, было построено так много. Можно согласиться с полезностью идеи о молекулах для объяснения данных опытов, но какая у нас уверенность в том, что атомы действительно существуют, а не представляют только фикцию, плод нашей фантазии? Нужно, впрочем сказать, что этот недостаток непосредственных доказательств отнюдь не поколебал веру громадного большинства людей науки в зернистое строение материи.

Отрицание атомической теории никогда еще не способствовало и не будет способствовать открытию новых фактов. Большим преимуществом атомической теории является то, что она дает нам, так сказать, ощутимое конкретное представление о материи, которое не только служит нам для объяснения множества явлений, но оказывает также нам громадные услуги как рабочая гипотеза".

Существует два метода изучения свойств вещества: молекулярно-кинетический и термодинамический.

Молекулярно-кинетическая теория истолковывает свойства тел, которые непосредственно наблюдаются на опыте (давление, температуру и т.п.), как суммарный результат действия молекул. При этом она пользуется статистическим методом, интересуясь не движением отдельных молекул, а лишь средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда другое её название – статистическая физика.

Термодинамика изучает макроскопические свойства тел, не интересуясь их микроскопической картиной. В основе термодинамики лежит несколько фундаментальных законов (называемых началами термодинамики), установленных на основании обобщения большой совокупности опытных фактов. Термодинамика и молекулярно-кинетическая теория взаимно дополняют друг друга, образуя по существу единое целое.

Данный видеоурок посвящен теме «Основные положения МКТ. Строение вещества. Молекула». Здесь вы узнаете, что изучает молекулярно-кинетическая теория (МКТ) в физике. Познакомитесь с тремя основными положениями, на которых базируется МКТ. Узнаете, чем определяются физические свойства вещества и что представляют собой атом и молекула.

Для начала давайте вспомним все предыдущие разделы физики, которые мы изучали, и поймём, что всё это время мы рассматривали процессы, происходящие с макроскопическими телами (или объектами макромира). Теперь же мы будем изучать их строение и процессы, протекающие внутри них.

Определение. Макроскопическое тело - тело, состоящее из большого числа частиц. Например: машина, человек, планета, бильярдный шар…

Микроскопическое тело - тело, состоящее из одной или нескольких частиц. Например: атом, молекула, электрон… (рис. 1)

Рис. 1. Примеры микро- и макрообъектов соответственно

Определив таким образом предмет изучения курса МКТ, следует теперь поговорить об основных целях, которые ставит перед собой курс МКТ, а именно:

  1. Изучение процессов, происходящих внутри макроскопического тела (движение и взаимодействие частиц)
  2. Свойства тел (плотность, масса, давление (для газов)…)
  3. Изучение тепловых явлений (нагревание-охлаждение, изменения агрегатных состояний тела)

Изучение этих вопросов, которое будет проходить на протяжении всей темы, начнётся сейчас с того, что мы сформулируем так называемые основные положения МКТ, то есть некоторые утверждения, истинность которых уже давно не подвергается сомнениям, и, отталкиваясь от которых, будет строиться весь дальнейший курс.

Разберём их по очереди:

Все вещества состоят из большого количества частиц - молекул и атомов.

Определение. Атом - мельчайшая частица химического элемента. Размеры атомов (их диаметр) имеет порядок см. Стоит отметить, что различных типов атомов, в отличие от молекул, относительно немного. Все их разновидности, которые на сегодняшний день известны человеку, собраны в так называемой таблице Менделеева (см. рис. 2)

Рис. 2. Периодическая таблица химических элементов (по сути разновидностей атомов) Д. И. Менделеева

Молекула - структурная единица вещества, состоящая из атомов. В отличие от атомов, они больше и тяжелее последних, а главное, они обладают огромным разнообразием.

Вещество, молекулы которого состоят из одного атома, называются атомарными , из большего количества - молекулярными . Например: кислород, вода, поваренная соль () - молекулярные; гелий серебро (He, Ag) - атомарные.

Причём следует понимать, что свойства макроскопических тел будут зависеть не только от количественной характеристики их микроскопического состава, но и от качественной.

Если в строении атомов вещество имеет какую-то определённую геометрию (кристаллическую решётку ), или же, наоборот, не имеет, то этим телам будут присущи различные свойства. Например, аморфные тела не имеют строгой температуры плавления. Самый известный пример - это аморфный графит и кристаллический алмаз. Оба вещества состоят из атомов углерода.

Рис. 3. Графит и алмаз соответственно

Таким образом «из скольких, в каком взаимном расположении и каких атомов и молекул состоит вещество?» - первый вопрос, ответ на который приблизит нас к пониманию свойств тел.

Все упомянутые выше частицы находятся в непрерывном тепловом хаотическом движении.

Так же, как и в рассматриваемых выше примерах, важно понимание не только количественных аспектов этого движения, но и качественных для различных веществ.

Молекулы и атомы твёрдых тел совершают лишь небольшие колебания относительно своего постоянного положения; жидких - также совершают колебания, но из-за больших размеров межмолекулярного пространства иногда меняются местами друг с другом; частички газа, в свою очередь, практически не сталкиваясь, свободно перемещаются в пространстве.

Частицы взаимодействуют друг с другом.

Взаимодействие это носит электромагнитный характер (взаимодействия ядер и электронов атома) и действует в обе стороны (как притягивание, так и отталкивание).

Здесь: d - расстояние между частицами; a - размеры частиц (диаметр).

Впервые понятие «атом» было введено древнегреческим философом и естествоведом Демокритом (рис. 4). В более поздний период активно задался вопросом о структуре микромира русский учёный Ломоносов (рис. 5).

Рис. 4. Демокрит

Рис. 5. Ломоносов

На следующем занятии мы введём методы качественного обоснования основным положениям МКТ.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Elementy.ru ().
  2. Samlib.ru ().
  3. Youtube ().

Домашнее задание

  1. *Благодаря какой силе возможно сделать эксперимент по измерению размеров молекулы масла, показанный в видеоуроке?
  2. Почему молекулярно-кинетическая теория не рассматривает органические соединения?
  3. Почему даже очень маленькая песчинка песка является объектом макромира?
  4. Силы преимущественно какой природы действуют на частицы со стороны других частиц?
  5. Как определить, является ли некая химическая структура химическим элементом?

Нас окружают разнообразные предметы. Мы можем увидеть, что это либо твердые тела, либо жидкости, либо газы. Возникает масса вопросов обо всем, что нас окружает. Ответы на многие вопросы дает молекулярно-кинетическая теория .

Молекулярно-кинетическая теория – это совокупность воззрений, используемых для описания наблюдаемых и измеряемых свойств вещества на основе изучения свойств атомов и молекул данного вещества, их взаимодействия и движения.

Основные положения молекулярно-кинетической теории

  • Все тела состоят из частиц – атомов, молекул, ионов.
  • Все частицы находятся в непрерывном хаотическом тепловом движении.
  • Между частицами любого тела существуют силы взаимодействия – притяжения и отталкивания.

Таким образом, в молекулярно-кинетической теории объектом исследования является система, состоящая из большого количества частиц – макросистема . Для объяснения поведения такой системы законы механики не применимы. Поэтому основным методом исследования является статистический метод изучения свойств вещества.

Для объяснения и предсказания явлений важно знать основные характеристики молекул :

  1. Размеры

Оценка размера молекулы может быть сделана как размер кубика a в котором содержится одна молекула, исходя из плотности твердых или жидких веществ и массы одной молекулы:

  1. Масса молекул

Отношение массы вещества m к числу молекул N в данном веществе:

  1. Относительная молекулярная масса

Отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:

  1. Количество вещества

Количество вещества равно отношению числа частиц N в теле (атомов – в атомарном веществе, молекул – в молекулярном) к числу молекул в одном моле веществаN А:

  1. Постоянная Авогадро

Количество молекул, содержащихся в 1 моль вещества.

  1. Молярная масса

Молярной массой вещества называют массу вещества, взятого в количестве 1 моля.

В Международной системе единиц молярная масса вещества выражается в кг/моль .

  1. Взаимодействие (количественно на основе опытов)

Для взаимодействия молекул характерно одновременно и притяжение, и отталкивание: на расстояниях r 0 доминирует отталкивание, на расстоянии r>r 0 – притяжение, причем оно быстро убывает. На расстоянии r 0 система двух молекул обладает минимумом потенциальной энергии (сила взаимодействия равна нулю) – это состояние устойчивого равновесия

Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях. С точки зрения МКТ агрегатные состояния различаются по значению среднего расстояния между молекулами и характеру движения молекул друг относительно друга .

Основные положения молекулярно-кинетической теории неоднократно подтверждались различными физическими экспериментами. Например, исследованием:

А) Диффузии

Б) Броуновского движения

Краткие итоги

Молекулярно-кинетическая теория объясняет строение и свойства тел на основе движения и взаимодействия атомов, молекул и ионов. В основе МКТ лежат три положения , которые полностью подтверждены экспериментально и теоретически:

1) все тела состоят из частиц – молекул, атомов, ионов;

2) частицы находятся в непрерывном хаотическом тепловом движении;

3) между частицами любого тела существуют силы взаимодействия – притяжения и отталкивания.

Молекулярное строение вещества подтверждается непосредственным наблюдением молекул в электронных микроскопах, а также растворением твердых веществ в жидкостях, сжимаемостью и проницаемостью вещества. Тепловое движение – броуновским движением и диффузией. Наличие межмолекулярного взаимодействия прочностью и упругостью твердых тел, поверхностным натяжением жидкостей.

Опорный конспект к уроку:

Вопросы для самоконтроля по блоку «Основные положения молекулярно-кинетической теории и их опытное обоснование»

  1. Сформулируйте основные положения молекулярно-кинетической теории.
  2. Какие наблюдения и эксперименты подтверждают основные положения молекулярно-кинетической теории?
  3. Что такое молекула? атом?
  4. Что называют относительной молекулярной массой? Какая формула выражает это понятие?
  5. Что называют количеством вещества? Какая формула выражает это понятие? Какова единица количества вещества?
  6. Что называют постоянной Авогадро?
  7. Что такое молярная масса вещества? Какая формула выражает смысл этого понятия? Какова единица молярной массы?
  8. Какова природа межмолекулярных сил?
  9. Какими свойствами обладают силы молекулярного взаимодействия?
  10. Как силы взаимодействия зависят от расстояния между ними?
  11. Опишите характер движения молекул в газах, жидкостях и твердых телах.
  12. Каков характер упаковки частиц у газов, жидкостей и твердых тел?
  13. Каково среднее расстояние между молекулами у газов, жидкостей и твердых тел?
  14. Перечислите основные свойства газов, жидкостей, твердых тел.
  15. Что называют броуновским движением?
  16. О чем свидетельствует броуновское движение?
  17. Что называют диффузией? Приведите примеры диффузии в газах, жидкостях и твердых телах.
  18. 18. Как зависит скорость диффузии от температуры тел?

Любое вещество рассматривается физикой как совокупность мельчайших частиц: атомов, молекул и ионов. Все эти частицы находятся в непрерывном хаотическом движении и взаимодействуют друг с другом с помощью упругих столкновений.

Атомическая теория - основа молекулярно-кинетической теории

Демокрит

Молекулярно-кинетическая теория зародилась в Древней Греции примерно 2500 лет назад. Её фундаментом считается атомическая гипотеза , авторами которой были древнегреческий философ Левкипп и его ученик, древнегреческий учёный Демокрит из города Абдеры.

Левкипп

Левкипп и Демокрит предполагали, что все материальные вещи состоят из неделимых мельчайших частиц, которые называются атомами (от греческого ἄτομος - неделимый ). А пространство между атомами заполнено пустотой. Все атомы имеют размер и форму, а также способны двигаться. Сторонниками этой теории в средние века были Джордано Бруно , Галилей , Исаак Бекман и другие учёные. Основы молекулярно-кинетической теории были заложены в труде «Гидродинамика», опубликованном в 1738 г. Его автором был швейцарский физик, механик и математик Даниил Бернулли .

Основные положения молекулярно-кинетической теории

Михаил Васильевич Ломоносов

Ближе всего к современной физике оказалась теория атомного строения вещества, которую в XVIII веке развил великий русский учёный Михаил Васильевич Ломоносов . Он утверждал, что все вещества состоят из молекул , которые он называл корпускулами . А корпускулы, в свою очередь, состоят из атомов . Теория Ломоносова получила название корпускулярной .

Но как оказалось, атом делится. Он состоит из положительно заряженного ядра и отрицательных электронов. А в целом он электрически нейтрален.

Современная наука называет атомом наименьшую часть химического элемента, являющуюся носителем его основных свойств. Связанные межатомными связями, атомы образуют молекулы. В молекуле могут быть один или нескольких атомов одинаковых или различных химических элементов.

Все тела состоят из огромного количества частиц: атомов, молекул и ионов. Эти частицы непрерывно и хаотично движутся. Их движение не имеет какого-либо определённого направления и называется тепловым движением . Во время своего движения частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

Наблюдать молекулы и атомы невооружённым глазом мы не можем. Но мы можем видеть результат их действий.

Подтверждением основных положений молекулярно-кинетической теории являются: диффузия , броуновское движение и изменение агрегатных состояний веществ .

Диффузия

Диффузия в жидкости

Одно из доказательств постоянного движения молекул - явление диффузии .

В процессе движения молекулы и атомы одного вещества проникают между молекулами и атомами другого вещества, соприкасающегося с ним. Точно так же ведут себя молекулы и атомы второго вещества по отношению к первому. И через некоторое время молекулы обоих веществ равномерно распределяются по всему объёму.

Процесс проникновения молекул одного вещества между молекул другого называется диффузией . С явлением диффузии мы сталкиваемся дома каждый день, когда опускаем пакетик чая в стакан с кипятком. Мы наблюдаем, как бесцветный кипяток меняет свой цвет. Бросив в пробирку с водой несколько кристалликов марганца, можно увидеть, что вода окрасится в розовый цвет. Это также диффузия.

Число частиц в единице объёма называют концентрацией вещества. При диффузии молекулы перемещаются из тех частей вещества, где концентрация выше, в те части, где она меньше. Перемещение молекул называют диффузионным потоком . В результате диффузии концентрации в различных частях веществ выравниваются.

Диффузию можно наблюдать в газах, жидкостях и твёрдых телах. В газах она происходит с большей скоростью, чем в жидкостях. Мы знаем, как быстро распространяются запахи в воздухе. Гораздо медленнее окрашивается жидкость в пробирке, если в неё капнуть чернил. А если мы положим на дно ёмкости с водой кристаллы поваренной соли и не перемешаем, то пройдёт не один день, прежде чем раствор станет однородным.

Диффузия происходит и на границе соприкасающихся металлов. Но её скорость в этом случае очень мала. Если покрыть медь золотом, то при комнатной температуре и атмосферном давлении золото приникнет в медь всего лишь на несколько микронов через несколько тысяч лет.

Свинец из слитка, положенного под грузом на золотой слиток, проникнет в него всего лишь на глубину в 1 см за 5 лет.

Диффузия в металлах

Скорость диффузии

Скорость диффузии зависит от площади поперечного сечения потока, разности концентраций веществ, разности их температур или зарядов. Через стержень диаметром в 2 см тепло распространяется в 4 раза быстрее, чем через стержень диаметром в 1 см. Чем выше разность температур веществ, тем выше скорость диффузии. При тепловой диффузии её скорость зависит от теплопроводности материала, а в случае потока электрических зарядов - от электропроводности .

Закон Фика

Адольф Фик

В 1855 г. немецкий физиолог Адольф Евгений Фик сделал первое количественное описание процессов диффузии:

где J - плотность диффузионного потока вещества,

D - коэффициент диффузии,

C - концентрация вещества.

Плотность диффузионного потока вещества J [см -2 · s -1 ] пропорциональна коэффициенту диффузии D [см -2 · s -1 ] и градиенту концентрации, взятому с противоположным знаком.

Это уравнение называют первым уравнением Фика .

Диффузия, в результате которой концентрации веществ выравниваются, называется нестационарной диффузией . При такой диффузии градиент концентрации изменяется со временем. А в случае стационарной диффузии этот градиент остаётся постоянным.

Броуновское движение

Роберт Броун

Открыл это явление шотландский ботаник Роберт Броун в 1827 г. Изучая под микроскопом взвешенные в воде цитоплазматические зёрна, выделенные из клеток пыльцы североамериканского растения Clarkia pulchella , он обратил внимание на мельчайшие твёрдые крупинки. Они дрожали и медленно передвигались без всякой видимой причины. Если температура жидкости повышалась, скорость частиц возрастала. Так же происходило, когда уменьшался размер частиц. А если их размер увеличивался, понижалась температура жидкости или увеличивалась её вязкость, движение частиц замедлялось. И эти удивительные «танцы» частиц можно было наблюдать бесконечно долго. Решив, что причина этого движения в том, что частицы живые, Броун заменил зёрна мелкими частицами угля. Результат оказался таким же.

Броуновское движение

Чтобы повторить опыты Броуна достаточно иметь самый обычный микроскоп. Размер молекул слишком мал. И рассмотреть их таким прибором невозможно. Но если мы подкрасим акварельной краской воду в пробирке, а затем посмотрим на неё в микроскоп, то увидим крошечные окрашенные частицы, которые беспорядочно двигаются. Это не молекулы, а частицы краски, взвешенные в воде. И двигаться их заставляют молекулы воды, которые ударяют их со всех сторон.

Так ведут себя все видимые в микроскоп частицы, находящиеся во взвешенном состоянии в жидкостях или газах. Их беспорядочное движение, вызванное тепловым движением молекул или атомов, называется броуновским движением . Броуновская частица непрерывно подвергается ударам со стороны молекул и атомов, из которых состоят жидкости и газы. И это движение не прекращается.

Но в броуновском движении могут участвовать частицы размером до 5 мкм (микрометров). Если их размер больше, они неподвижны. Чем меньше размер броуновской частицы, тем быстрее она движется. Частицы менее 3 мкм двигаются поступательно по всем сложным траекториям или вращаются.

Сам Броун не смог объяснить открытое им явление. И лишь в XIX веке учёные нашли ответ на этот вопрос: движение броуновских частиц вызвано воздействием на них теплового движения молекул и атомов.

Три состояния вещества

Молекулы и атомы, из которых состоит вещество, не только находятся в движении, но и взаимодействуют друг с другом, взаимно притягиваясь или отталкиваясь.

Если расстояние между молекулами сравнимо с их размерами, то они испытывают притяжение. Если же оно становится меньше, то начинает преобладать сила отталкивания. Этим объясняется сопротивляемость физических тел деформации (сжатию или растяжению).

Если тело сжимать, то расстояние между молекулами уменьшается, и силы отталкивания будут стараться вернуть молекулы в первоначальное состояние. При растяжении деформации тела буду мешать силы притяжения между молекулами.

Молекулы взаимодействуют не только внутри одного тела. Опустим в жидкость кусочек ткани. Мы увидим, что он намокнет. Это объясняется тем, что молекулы жидкости притягиваются к молекулам твёрдых тел сильнее, чем друг другу.

Каждое физическое вещество в зависимости от температур и давлений может быть в трёх состояниях: твёрдом, жидком или газообразном . Они называются агрегатными .

В газах расстояние между молекулами велико. Поэтому силы притяжения между ними настолько слабы, что они совершают хаотическое и практически свободное движение в пространстве. Направление своего движения они меняют, ударяясь друг о друга или о стенки сосудов.

В жидкостях молекулы расположены ближе одна к другой, чем в газе. Силы притяжения между ними больше. Молекулы в них движутся уже не свободно, а хаотично колеблются возле положения равновесия. Но они способны перескакивать в направлении действия внешней силы, меняясь местами друг с другом. Результатом этого является течение жидкости.

В твёрдых телах силы взаимодействия между молекулами очень велики из-за близкого расстояния между ними. Притяжение соседних молекул они преодолеть не могут, поэтому способны совершать только колебательные движения около положения равновесия.

Твёрдые тела сохраняют объём и форму. Жидкость формы не имеет, она всегда принимает форму сосуда, в котором находится в данный момент. Но её объём при этом сохраняется. По-другому ведут себя газообразные тела. Они легко меняют и форму, и объём, принимая форму того сосуда, в который их поместили, и занимая весь предоставленный им объём.

Однако существуют и такие тела, которые имеют структуру жидкости, обладают небольшой текучестью, но при этом способны сохранять форму. Такие тела называют аморфными .

Современная физика выделяет и четвёртое агрегатное состояние вещества - плазму .

Основные положения молекулярно-кинетической теории.

Молекулярно-кинетическая теория (МКТ) занимается изучением свойств веществ, основываясь при этом на представлениях о частицах вещества.

МКТ базируется на трех основных положениях:

1. Все вещества состоят из частиц - молекул, атомов и ионов.

2. Частицы вещества беспрерывно и беспорядочно движутся.

3. Частицы вещества взаимодействуют друг с другом.

Беспорядочное (хаотичное) движение атомов и молекул в веществе называют тепловым движением, потому что скорость движения частиц увеличивается с ростом температуры. Экспериментальным подтверждением непрерывного движения атомов и молекул в веществе является броуновское движение и диффузия.

Частицы вещества.

Все вещества и тела в природе состоят из атомов и молекул - групп атомов. Такие большие тела называются макроскопическими. Атомы и молекулы относятся к микроскопическим телам. Современные приборы (ионные проекторы, туннельные микроскопы) позволяют видеть изображения отдельных атомов и молекул.
Основа строения вещества - атомы. Атомы тоже имеют сложную структуру, они состоят из элементарных частиц - протонов, нейтронов, входящих в состав ядра атома, электронов, а также других элементарных частиц.
Атомы могут объединяться в молекулы, а могут быть вещества, состоящие только из атомов. Атомы в целом электронейтральны. Атомы, имеющие избыток или недостаток электронов называются ионами. Бывают положительные и отрицательные ионы.

На иллюстрации показаны примеры разных веществ, имеющих строение соответственно в виде атомов, молекул и ионов.

Силы взаимодействия между молекулами.

На очень малых расстояниях между молекулами действуют силы отталкивания. Благодаря этому молекулы не проникают друг в друга и куски вещества никогда не сжимаются до размеров одной молекулы. Молекула - это сложная система, состоящая из отдельных заряженных частиц: электронов и атомных ядер. Хотя в целом молекулы электрически нейтральны, но между ними на малых расстояниях действуют значительные электрические силы: происходит взаимодействие электронов и атомных ядер соседних молекул. Если молекулы находятся на расстояниях, превышающих их размеры в несколько раз, то силы взаимодействия практически не сказываются. Силы между электрически нейтральными молекулами являются короткодействующими. На расстояниях, превышающих 2 - 3 диаметра молекул, действуют силы притяжения. По мере уменьшения расстояния между молекулами сила притяжения сначала увеличивается, а затем начинает убывать и убывает до нуля, когда расстояние между двумя молекулами становится равным сумме радиусов молекул. При дальнейшем уменьшении расстояния электронные оболочки атомов начинают перекрываться, и между молекулами возникают быстро нарастающие силы отталкивания.

Идеальный газ. Основное уравнение МКТ.

Известно, что частицы в газах, в отличие от жидкостей и твердых тел, располагаются друг относительно друга на расстояниях, существенно превышающих их собственные размеры. В этом случае взаимодействие между молекулами пренебрежимо мало и кинетическая энергия молекул много больше энергии межмолекулярного взаимодействия. Для выяснения наиболее общих свойств, присущих всем газам, используют упрощенную модель реальных газов - идеальный газ. Основные отличия идеального газа от реального газа:

1. Частицы идеального газа - сферические тела очень малых размеров, практически материальные точки.
2. Между частицами отсутствуют силы межмолекулярного взаимодействия.
3. Соударения частиц являются абсолютно упругими.

Реальные разреженные газы действительно ведут себя подобно идеальному газу. Воспользуемся моделью идеального газа для объяснения происхождения давления газа. Вследствие теплового движения, частицы газа время от времени ударяются о стенки сосуда. При каждом ударе молекулы действуют на стенку сосуда с некоторой силой. Складываясь друг с другом, силы ударов отдельных частиц образуют некоторую силу давления, постоянно действующую на стенку. Понятно, что чем больше частиц содержится в сосуде, тем чаще они будут ударяться о стенку сосуда, и тем большей будет сила давления, а значит и давление. Чем быстрее движутся частицы, тем сильнее они ударяют в стенку сосуда. Мысленно представим себе простейший опыт: катящийся мяч ударяется о стенку. Если мяч катится медленно, то он при ударе подействует на стенку с меньшей силой, чем если бы он двигался быстро. Чем больше масса частицы, тем больше сила удара. Чем быстрее движутся частицы, тем чаще они ударяются о стенки сосуда. Итак, сила, с которой молекулы действуют на стенку сосуда, прямо пропорциональна числу молекул, содержащихся в единице объема (это число называется концентрацией молекул и обозначается n), массе молекулы m o , среднему квадрату их скоростей и площади стенки сосуда. В результате получаем: давление газа прямо пропорционально концентрации частиц, массе частицы и квадрату скорости частицы (или их кинетической энергии). Зависимость давления идеального газа от концентрации и от средней кинетической энергии частиц выражается основным уравнением молекулярно-кинетической теории идеального газа. Мы получили основное уравнение МКТ идеального газа из общих соображений, но его можно строго вывести, опираясь на законы классической механики. Приведем одну из форм записи основного уравнения МКТ:
P=(1/3)· n· m o · V 2 .