ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Что такое композиционные материалы? Перспективы использования композитных материалов в машиностроении

Чернышов Е.А., Романов А.Д. // Журнал Современные наукоемкие технологии. – 2014. – № 2. – С. 46-51;

В статье представлено современное состояние технологий производства изделий из композиционных материалов, включая сведения о применяемых технологиях, программном обеспечении, оборудовании для создания матриц, оборудовании для создания композиционных изделий, оборудование контроля геометрии изделия и неразрушающего контроля.

Композиционный материал представляет собой материал, структура которого состоит из нескольких компонентов различных по своим физико-механическим свойствам: металлические или неметаллические матрицы с заданным распределением в них упрочнителей, их сочетание придает композиционному материалу новые свойства. По характеру структуры композиционные материалы подразделяются на волокнистые, упрочненные непрерывными волокнами и нитевидными кристаллами, дисперстноупрочненнные материалы, полученные путем введения в матрицу дисперсных частиц упрочнителей, слоистые материалы, созданные путем прессования или прокатки разнородных материалов .

Сегодня композиционные материалы особенно востребованы в различных отраслях промышленности. Первые суда из стеклопластика были изготовлены во второй половине 30-х годов двадцатого века. С 50-х годов стеклопластиковое судостроение получило широкое распространение в мире, было построено значительное число яхт, рабочих и спасательных катеров и рыболовецких судов, десантно-высадочных судов и др. . Одним из первых применений в авиации композиционных материалов явилось изготовление из углепластика в 1967 г. панелей задней кромки крыла самолета F-111A. В последние годы в изделиях аэрокосмического назначения все чаще можно встретить конструкции из трехслойного «сэндвича» сотовым алюминиевым заполнителем и обшивками из углепластика. В настоящее время порядка 50 % от общей массы самолета Boeing 787 или Airbus A350 составляют композиционные материалы. В автомобилестроении композиционные материалы применяются достаточно давно, в основном получили развитие технологии изготовления аэродинамического обвеса. Ограниченно композиционные материалы применяются для изготовления деталей подвески и двигателя.

Однако до последнего времени на предприятиях использовалась в основном ручная выкладка деталей из композитов, а серийность выпускаемой продукции не требовала глубокой автоматизации процессов. Сегодня с развитием конкуренции на рынке не обойтись без современных средств проектирования и подготовки производства, а также без эффективного оборудования для работы с композитами.

Технологии создания изделий из композиционных материалов

В большинстве случаев в качестве связующего наполнителя используется химически отверждаемая термореактивная смола, процесс отверждения характеризуется экзотермической химической реакцией. В основном используются полиэфирные, эпоксидные, фенольные и высокотемпературные смолы. Чаще всего в изготовлении деталей сложной конфигурации применяют технологии суть которых заключается в выкладке «сухой» основы с последующей пропиткой связующим составом («влажная» формовка, намотка, инжекция, Resin Transfer Molding / RTM) или с поочередной выкладкой «сухой» основы с пленочным клеем (вакуумная пропитка, Resin Film Infusion / RFI). Существует несколько основных технологий изготовления деталей из композиционных материалов, включая ручные и автоматизированные методы:

  • пропитка армирующих волокон матричным материалом;
  • формирование в пресс-форме лент упрочнителя и матрицы, получаемых намоткой;
  • холодное прессование компонентов с последующим спеканием;
  • электрохимическое нанесение покрытий на волокна с последующим прессованием;
  • осаждение матрицы плазменным напылением на упрочнитель с последующим обжатием;
  • пакетная диффузионная сварка монослойных лент компонентов;
  • совместная прокатка армирующих элементов с матрицей и др.

Кроме того широкое распространение получила технология изготовления деталей с использованием препрегов (полуфабрикатов, представляющих собой материал основы, пропитанный связующим составом).

Программное обеспечение

Задачей конструирования изделия из композиционных материалов является правильный подбор композиции, обеспечивающий сочетание свойств, необходимых в конкретном эксплуатационном случае. При конструировании армированных полимерных композиционных материалов широко используется компьютерная обработка данных, для чего разработано большое количество разнообразных программных продуктов. Их использование позволяет повышать качество продукции, сокращать длительность разработки и организации производства конструкций, комплексно, качественно и быстро решать задачи их рационального проектирования. Учет неравномерности нагрузок позволяет проектировать корпусную конструкцию из армированного композита с дифференцированной толщиной, которая может изменяться в десятки раз.

Современные программные продукты можно условно разделить на две группы: выполняющие пакетный анализ ламинатов в «двухмерной» или «балочной/пластинной» постановке и в трехмерной. Первая группа – это программы типа Laminator, VerctorLam Cirrus и др. «Трехмерное» решение – метод конечных элементов, и тут большой выбор среди имеющихся программных продуктов. На рынке «технология моделирования композитов» существуют различные программные продукты: FiberSim (Vistagy / Siemens PLM Software), Digimat (e-Xstream / MSC Software Corp.), Helius (Firehole Composites / Autodesk), ANSYS Composite PrepPost, ESAComp (Altair Engineering) и др. .

Практически все специализированное программное обеспечение различных компаний, имеет возможность интеграции с системами СAD высокого уровня – Creo Elements/Pro, Siemens NX, CATIA. В целом, работа выглядит следующим образом: выбирается материал слоев, определяются общие параметры пакета слоев, определяется метод формирования слоев, послойный метод применяется для производства несложных деталей, для сложных изделий применяются методы зонного или структурного проектирования. В процессе выкладки слоев задается их последовательность. В зависимости от метода производства изделия (ручная выкладка, формование, выкладка ленты, выкладка волокна) осуществляется послойный анализ материала на возможные деформации. Состав слоев приводится в соответствие с шириной используемого материала.

После завершения формирования слоев пользователь получает данные об изделии, позволяющие использовать их для различных целей, например:

  • вывести в виде конструкторской документации;
  • использовать в виде исходных данных для раскроя материала;
  • исходные данные для лазерного проектора для обозначения контуров мест укладки выкроек.

Переход на современные технологии проектирования и подготовки производства изделий позволяет:

  • сократить расход композитных материалов за счет использования точных разверток и раскройных станков;
  • увеличить скорость и повысить качество ручной выкладки материала за счет использования точных заготовок и лазерных проекций мест их выкладки;
  • добиться высокого уровня повторяемости изделий;
  • сокращение влияния человеческого фактора на качество производимых изделий;
  • снижение требований к квалификации персонала, занятого укладкой.

Оборудование для создания матриц

Изготовление мастер-модели из дерева процесс трудоемкий и длительный, для уменьшения времени изготовления матрицы и повышения точности используются: трех/пятиосевые фрезерные станки с ЧПУ, контрольно-измерительные машины или 3Д сканеры.

Портальный пятиосевой фрезерный станок, (рис 1), доступен лишь крупным производителям. Небольшие компании используют фрезерные роботоризированные комплексы на линейных блоках (linear robot unit) (рис. 2), либо изготавливают мастер-модели из склеенной заготовки. В этом случае за основу заготовки берется жесткий пустотелый каркас, который обклеивается снаружи и затем целиком обрабатывается. Компании, не имеющие возможность обработать изделие целиком, идут по другому пути: Сначала в CAD-системе при помощи плоскостей строится упрощенная 3D-модель изделия, на основе упрощенной модели проектируется жесткий силовой каркас из фанеры. Затем вся внешняя поверхность представляется в CAD-системе как облицовка внутреннего каркаса. Размеры облицовки подбираются таким образом, чтобы ее можно было отфрезеровать на имеющемся фрезерном станке с ЧПУ (рис 3). Затем точно собранный каркас обклеивается модельной облицовкой. При таком методе точность мастер-модели ниже и требуется ручная доводка стыков облицовки, но это позволяет создавать изделия, размеры которых значительно превышают возможности имеющихся станков с ЧПУ.

Рис. 1. Пятикоординатный фрезерный станок MR 125, способен обрабатывать детали размером 15×5 м и высотой до 2,5 м

Рис. 2. Фрезерный роботоризированный комплекс Kuka

Рис. 3. «Небольшой» пятикоординатный фрезерный станок

Оборудование для создания композитов

Первым шагом механизации процесса формования явилось использование пропиточных машин, которые помимо пропитки собирают стеклоткани или стеклохолсты в многослойные пакеты общей толщиной 4 – 5 мм. Для механизации процессов, снижения вероятности ошибки персонала, увеличения производительности применяется, например, метод напыления, с помощью которого можно получать наружную обшивку, полотнища переборок и другие конструкции из стеклопластика. Метод напыления позволяет получить приформовочные угольники механизированным путем и обеспечить более высокую производительность труда по сравнению с приформовочными угольниками, формованными вручную из полосок стеклоткани или стеклохолста. Следующий этап развития производства изделий из композитов это внедрение установки для автоматизированной намотки выкладки углестеклонаполнителей. Первый «робот» предназначенный для укладки сухой ткани рулонного типа был продемонстрирован американской компанией Magnum Venus Plastech. Впервые в России подобное оборудование внедрено на ОАО «ВАСО». Данное оборудование позволяет изготавливать композитные детали длиной до 8 м и диаметром до 3 м (рис 4) .

Для облегчения ручной выкладки ткани и сокращения отходов применяются раскройные машины для автоматической резки ткани/препрега, лазерные проекторы LAP и LPT для контурной проекции при выкладке препрега на технологическую оснастку. Используя модуль лазерного проецирования (рис 5) имеется возможность автоматически генерировать данные для проецирования непосредственно из 3D-модели композитного изделия. Такая схема работы значительно сокращает временные издержки, увеличивает эффективность процесса, снижает вероятность дефектов и ошибок, и делает управление данными проще. Комплекс «ПО – раскройный станок – проекционный лазер» по сравнению с традиционной выкладкой снижает трудоемкость раскроя примерно на 50 %, трудоемкость выкладки – примерно на 30 %, повышает коэффициент использования материалов, то есть можно сэкономить от 15 до 30 % материала .

Формование углепластиков методом намотки позволяет получать изделия с наиболее высокими деформационно-прочностными характеристиками. Методы намотки делятся на «сухие» и «мокрые». В первом случае для намотки используются препреги в виде нитей, жгутов или лент. Во втором – пропитка армирующих материалов связующим ведется непосредственно в процессе намотки. В последнее время разрабатывается оборудование, в котором для управления схемой ориентации волокон используются компьютерные системы. Это позволяет получать трубчатые изделия, имеющие изгибы и неправильную форму, а также изделия со сложной геометрией. Разрабатывается оборудование для намотки с применением гибкой технологии, когда армирующие волокнистые материалы можно укладывать на оправке в любом направлении.

Рис. 4 Станок для автоматизированной намотки-выкладки углестеклонаполнителей Viper 1200 FPS фирмы MAG Cincinnati

Рис. 5. Система лазерного позиционирования (зеленый контур)

Оборудование для контроля геометрии и внутренней структуры изделия

Обводы изделий часто имеют криволинейные образующие, проверить которые традиционными «плазовыми» методами не представляется возможным. При помощи 3D-сканирования можно определить насколько точно физический образец соответствует компьютерной 3D-модели. Для 3D-сканирования также можно воспользоваться координатно-измерительной машиной (КИМ) типа «рука» или бесконтактной оптической/лазерной системой сканирования. Однако при использовании бесконтактные системы сканирования, как правило, не могут корректно работать с зеркальными и высокоглянцевыми поверхностями. При использовании «измерительных рук» потребуется несколько последовательных переустановов, поскольку рабочее пространство в силу конструкции измерительных рук обычно ограничено сферой радиусом 1,2-3,6 м.

Также у стеклопластиковых материалов есть ряд проблемных направления. Один из основных – это контроль качества готового изделия (отсутствие воздушных полостей) и коррозия в процессе эксплуатации. Для неразрушающего контроля судовых корпусов из композитов достаточно широко применяют рентген, но стремятся к его сокращению по ряду соображений. В последнее время стали появляться публикации описывающие выявление расслоений инфракрасной термографией (тепловизорами). При этом, что тепловизионный, что рентгеновский методы НК обнаруживая расслоения, не позволяют измерять их размеры и определять глубину залегания дефектов, для того чтобы оценивать их влияние на изменение характеристик прочности.

Заключение

В настоящее время в России практически только начинается интенсивное развитие автоматизации сборки композиционных изделий, в том числе оборудование для создания матриц. Чаще всего выполняют только отдельные элементы аэродинамического обвеса для «тюнинга» автомобилей. Успехом является внедрение на средненевском судостроительном заводе системы FiberSIM при проектировании и строительстве базового тральщика проекта 12700 , а также на ВАСО станка автоматической укладки ткани. Но это отдельные примеры, для повышения конкурентоспособности необходимо комплексное внедрение новых технологий.

Композитные материалы

Композицио́нный материа́л (компози́т, КМ ) - неоднородный сплошной материал, состоящий из двух или более компонентов , среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.

Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных ком­понентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов , повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Преимущества композиционных материалов

Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но,проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

  • высокая удельная прочность
  • высокая жёсткость (модуль упругости 130…140 ГПа)
  • высокая износостойкость
  • высокая усталостная прочность
  • из КМ возможно изготовить размеростабильные конструкции

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Большинство классов композитов (но не все) обладают недостатками:

  • высокая стоимость
  • анизотропия свойств
  • повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны

Области применения

Товары широкого потребления

Машиностроение

Характеристика

Технология применяется для формирования на поверхностях в парах трения сталь -резина дополнительных защитных покрытий . Применение технологии позволяет увеличить рабочий цикл уплотнений и валов промышленного оборудования, работающих в водной среде .

Композиционные материалы состоят из нескольких функционально отличных материалов. Основу неорганических материалов составляют модифицированные различными добавками силикаты магния , железа , алюминия . Фазовые переходы в этих материалах происходят при достаточно высоких локальных нагрузках, близких к пределу прочности металла . При этом на поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок, благодаря чему удается изменить структуру поверхности металла.

Технические характеристики

Защитное покрытие в зависимости от состава композиционного материала может характеризоваться следующими свойствами:

  • толщина до 100 мкм;
  • класс чистоты поверхности вала (до 9);
  • иметь поры с размерами 1 - 3 мкм;
  • коэффициент трения до 0,01;
  • высокая адгезия к поверхности металла и резины.

Технико-экономические преимущества

  • На поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок
  • Формируемый на поверхности политетрафторэтиленов слой имеет низкий коэффициент трения и невысокую стойкость к абразивному износу ;
  • Металлоорганические покрытия являются мягкими, имеют малый коэффициент трения, пористую поверхность, толщина дополнительного слоя составляет единицы микрон.

Области применения технологии

  • нанесение на рабочую поверхность уплотнений с целью уменьшения трения и создания разделительного слоя, исключающего налипание резины на вал в период покоя.
  • высокооборотные двигатели внутреннего сгорания для авто и авиастроения.

Авиация и космонавтика

Вооружение и военная техника

Благодаря своим характеристикам (прочности и лёгкости) композиционные материалы применяются в военном деле для производства различных видов брони :

  • брони для военной техники

См. также

  • IBFM_(Инновационные_строительные_и_отделочные_материалы)

Ссылки

Wikimedia Foundation . 2010 .

  • Композит
  • Морской энциклопедический справочник
  • Композитные гибкие связи - Рисунок 1. Схема трехслойной стены: 1. Внутренняя часть стены; 2. Гибкая связь; 3. Утеплитель; 4. воздушный зазор; 5. Облицовочная часть стены Композитные гибкие связи используются … Википедия

    IBFM (Инновационные строительные и отделочные материалы) - IBFM (сокращение от англ. Innovation Buildind and Facing Materials, Инновационные Строительные и Отделочные Материалы) это новая категория товаров для строительства, в которую объединяются строительные и отделочные материалы по принципу… … Википедия

    углепластики - Термин углепластики Термин на английском carbon fibre reinforced plastics Синонимы Аббревиатуры CFRP Связанные термины композиционные материалы, полимерные, углеродные наноматериалы Определение композитные материалы, состоящие из углеволокон и… … Энциклопедический словарь нанотехнологий

    ПЛАСТМАССЫ - (пластические массы, пластики). Большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия. Эти вещества состоят в основном из углерода (C), водорода (H),… … Энциклопедия Кольера

    Нож - У этого термина существуют и другие значения, см. Нож (значения). Нож (праслав. *nožь от *noziti протыкать) режущий инструмент, рабочим органом которого является клинок полоса твёрдого материала (обычно металла) с лезвием на … Википедия

    Летно-технические характеристики вертолета Colibri EC120 B - Colibri EC120 B - многоцелевой легкий вертолет, способный перевозить до четырех пассажиров. Просторный грузовой отсек позволяет вместить пять больших чемоданов. Авария вертолета под Мурманском Разработчик: франко германо испанская Группа… … Энциклопедия ньюсмейкеров

    Углеродные нанотрубки - У этого термина существуют и другие значения, см. Нанотрубки. Схематическое изображение нанотрубки … Википедия

Особенности проектирования и внедрения изделий из КМ

При проектировании, изготовлении и внедрении изделий из компо­зиционных материалов на основе волокнистых наполнителей (ВКМ) не­ обходимо учитывать ряд особенностей, присущих этому классу мате­риалов:

а) Анизотропия физико-механических характеристик ВКМ.

Если традиционные материалы (сталь, чугун), а также дисперсно-упрочненные КМ обладают изотропностью свойств, то ВКМ имеют ярко выраженную анизотропию характеристик. При значительном различии характеристик волокнистой арматуры и матрицы соотношение между характеристиками ВКМ в различных направлениях может варьировать­ся в широких пределах: от 3-5 раз до 100 раз и более.

б) При проектировании конструкций, сооружений из традиционных материалов конструктор имеет дело с полуфабрикатами в виде листо­вого, профильного проката, литья и т.д. с гарантированными поставщи­ ком свойствами. Его задача состоит в выборе подходящих полуфабри­катов, определении геометрии, исходя из функционального назначения, и способов соединения отдельных деталей. Задача технолога - обес­печить заданную форму, размеры и качество соединения конструктив­ных элементов. Анализ процессов, протекающих на всех этапах созда­ния полуфабриката, получение материала с требуемым уровнем харак­ теристик относится к компетенции материаловедов. Сложилось вре­менное и организационное разделение процесса получения изделий из традиционных материалов на три этапа:

- материаловедческий - получение материала с требуемыми ха рактеристиками;

- конструкторский - проектирование изделий конструкций;

- технологический - изготовление изделий и машин.

Эти этапы разнесены по времени и могут считаться не связанными между собой, если конструктор руководствуется характеристиками ма­териала, достигнутыми материаловедами, и имеет общие представле­ния об уровне современных технологий.

Изготовление конструкций из КМ происходит, как правило, за одну технологическую операцию с созданием материала. При этом синхрон­но с изготовлением конструкции протекают сложные физико-химические и теплофизические процессы, связанные с образованием структуры и агрегатными превращениями матрицы, взаимодействием ее с арми­рующим материалом. Им сопутствуют механические явления, прямо влияющие на свойства материала и несущую способность композитных деталей, на образование в ней дефектов в ненагруженном состоянии. Поэтому конструктор, проектирующий изделия из КМ , должен знать и учитывать при разработке материаловедческие принципы создания КМ и технологические приемы получения изделий из КМ. Технолог без кон­структорских знаний по условиям нагружения и эксплуатации создавае­ мого изделия из ВКМ не может изготовить изделия, эффективно ис­пользуя отличия КМ от традиционных материалов, т.к. свойства КМ за­висят от структурно-геометрических факторов (объемного содержания армирующих волокон и матрицы, количества и расположения слоев и др.), которые заранее не известны. Поэтому подход должен быть кон структорско-технологическим, а это определяет организационные осо­ бенности производства изделий из КМ .

в) В связи с тесной взаимосвязью этапов изготовления конструк ций из КМ - создание материала, конструкций и технологии получения - более эффективно становится использовать специализированные КБ, имеющие конструкторский и технологический потенциал, оснащенные вычислительной техникой и мощным, но гибким опытным производ­ ством, потому как все конструктивные решения необходимо отрабаты вать на опытных образцах изделий. Такой поход в организации производства должен быть в каждой отрасли, где КМ находят широкое при­ менение: в строительстве, на транспорте, в авиации, химическом ма шиностроении, электротехнической промышленности и др., т.к. предъ являемые к ним требования сильно различаются.

г) При конструировании деталей из полимерных КМ необходимо учитывать их недостатки:

Малую сдвиговую прочность;

Невысокие характеристики при сжатии;

Повышенную ползучесть;

Сравнительно низкую теплостойкость ПКМ.

Особое внимание следует уделить соединениям изделий из ПКМ в связи с малой сдвиговой и контактной прочностью.

д) Несмотря на большой интерес к вопросам предельного состояния, надежных методик, позволяющих определить запасы прочности конструкционных элементов из КМ , нет. В связи со сложностью про блем, связанных с прочностью изделий из КМ , возрастает значение выбора методов при обработке результатов экспериментальных испыта ний.

В настоящее время оценка прочности конструкций из КМ состоит из комплекса испытаний, включающих:

100% испытания эксплуатационными нагрузками;

Выборочные испытания с доведением конструкции до разруше ния.

Гарантию качества и успешное прохождение этих двух видов испы­таний обеспечивает стабильность технологических процессов.

В последние годы на первый план выходит индивидуальная оценка прочности каждой детали с помощью неразрушающих методов испыта­ ния - ультразвук, акустическая эмиссия и др.

е) Определение допусков и посадок на детали из КМ .

Т.к. формирование поверхностей в изделиях из КМ происходит различными способами (намотка, прессование, выкладка и т.д.) и они чаще всего не подвергаются механической обработке, то система до пусков и требования к чистоте поверхности должны строится весьма гибко. Аналогичный подход должен быть и к регламентации разброса массы, связанной с разбросом параметров исходных материалов и их соотношением в КМ , появлением в ходе технологического процесса объемов, различающихся по ориентации наполнителя, и т.д.

ж) Переход на КМ при изготовлении машиностроительной продук­ции затрагивает вопросы детализации узлов машин. Т.к. материал конструируется под конкретные детали, которые в дальнейшем нежелательно подвергать механической обработке, то, естественно, встает вопрос стыковки отдельных деталей. Методы, принятые при изготовле­нии аналогичных узлов машин из металлов, в данном случае либо ма лоэффективны, либо вообще неприемлемы. В связи с этим целесооб­ разно изготавливать из КМ целиком узел, ранее расчленяемый на ряд деталей, которые затем собирались в изделие с помощью разъемных или неразъемных соединений. Это направление весьма эффективно, т.к. сокращаются трудозатраты и энергозатраты , хотя сокращение опе­ раций требует перестройки технологического оборудования и процесса производства.

Например, в США в 1970 г. в массовое производство легковых ав­томобилей была внедрена передняя панель с проемом под облицовку радиатора, впервые изготовлявшаяся из листового КМ . Помимо сниже­ ния массы на 50%, было достигнуто значительное сокращение расхо­ дов за счет объединения нескольких деталей в одну. Эта цельная па­нель исключила множество операций листовой штамповки, механиче­ской обработки на станках и сборки, устранила связанные с ними штам­ пы, формы и станочные зажимные приспособления. Она объединила 16 листовых штамповок и отлитых под давлением деталей в одну деталь из КМ . В 1979 г. на более чем 35 моделях легковых автомобилей стали применять передние панели из КМ , включающие корпуса и гнезда фар, стояночных фонарей, стоп-сигналов, сигналов поворота и габаритных огней.

з) Необходимо изменение подходов к определению экономической эффективности применения КМ . Как правило, экономический эффект от применения КМ образуется у «Потребителя» в виде повышения такти­ ко-технических, эксплуатационных характеристик изделия, его долго­вечности, ремонтопригодности и т.п. Поэтому экономический эффект можно определить только при использовании системного подхода, учи­тывающего все составляющие общего эффекта от замены традицион­ ного материала на КМ , и перехода на новую технологию при изготовле­нии деталей или конструкций в целом.

Только индивидуальный подход с учетом указанных особенностей делает переход к использованию КМ взамен металлов эффективным и перспективным, раскрывающим новые горизонты для развития и со­вершенствования техники.

Классификация композиционных материалов

По типу армирующих наполнителей современные КМ могут быть разделены на две группы:

Дисперсно-упрочненные;

Волокнистые.

Дисперсно-упрочненные композитные материалы (ДУКМ) представляют собой материа­лы, в матрице которых равномерно распределены мелкодисперсные частицы, которые призваны исполнять роль упрочняющей фазы. Дисперсные частицы наполнителя вводят в матрицу специальными технологическими приемами. Частицы не должны активно взаимодействовать с матрицей и не должны растворяться в ней вплоть дотемпературы плавления. В этих материалах основную нагрузку воспринимает матрица, в которой за счет армирующей фазы создается структура, затрудняю­щая движение дислокаций. Дисперсно-упрочненные КМ - изотропны. Их применяют в авиации, ракетостроении и др. Содержание дисперсной фазы составляет ~5-7% (трубки, проволоки, фольга, прутки и т.п.).

Механизм упрочняющего действия от включения дисперсных частиц в матрице, отличается для разных типов ДУКМ.

1) Дисперсно-упрочненные композиционные материалы «пластичная матрица – хрупкий наполнитель»

Для этого типа материалов матрица может быть представлена, например, следующими металлами: Al , Ag , Cu , Ni , Fe , Co , Ti . В качестве наполнителя чаще всего выбираются соединения из оксидов (Al 2 O 3 ; SiO 2 ; Cr 2 O 3 ; ThO 2 ; TiO 2), карбидов (SiC ; TiC ), нитридов (Si 3 N 4 ; AlN ), боридов (TiB 2 ; CrB 2 ; ZrB 2).

На основании опытных данных могут быть сформулированы следующие требования к материалу наполнителя, обеспечивающие наиболее эффективное его использование в качестве упрочняющей фазы. Он должен обладать:

Высокой тугоплавкостью (t пл . > 1000 ° С);

Высокой твердостью и высоким модулем упругости;

Высокой дисперсностью (удельная поверхность – S уд 10 м 2 /г);

Должна отсутствовать коалесценция (слияние) дисперсных частиц в процессе получения и эксплуатации;

Должно иметь место низкое значение скорости диффузиидисперсных частиц в металлическую матрицу.

Механизм упрочнения композиционные материалы «пластичная матрица – хрупкий наполнитель» .

Упрочнение идет по дислокационному механизму: если расстояние между частицами достаточно, то дислокация под действием касательного напряжения выгибается между ними, ее участки смыкаются за каждой частицей, образуя вокруг частиц петли. В областях между дислокационными петлями возникает поле упругих напряжений, затрудняющее проталкивание новых дислокаций между частицами (рис. 1). Этим достигается повышение сопротивления зарождению (инициированию) трещины.

Рис. 1. Схематическое изображение процесса формирования дислокационных петель в пластичной матрице:

1 – дисперсные частицы; 2 – линии дислокаций; 3 – дислокационные петли; 4 – поле упругих напряжений;

d – размер частицы наполнителя; L – расстояние между соседними частицами наполнителя;

τ – направление действия касательных напряжений.

Получение композиционных материалов «пластичная матрица – хрупкий наполнитель» .

В общем случае последовательность технологических операций для получения ДУКМ типа «пластичная матрица – хрупкий наполнитель» является следующей:

а) Получение композитного порошка;

б) Прессование;

в) Спекание;

г) Деформация полуфабриката;

д) Отжиг.

2) Дисперсно-упрочненные композиционные материалы «хрупкая матрица – пластичный наполнитель»

Структура таких ДУКМ представлена керамической матрицей с равномерно распределенными в ней дисперсными металлическими частицами наполнителя. Эти композиты относятся к классу керметов . Расстояние между соседними частицами задается путем варьирования их объемной доли, а эффект от армирования может проявляться при содержании частиц 15-20% объема.

В качестве керамической фазы могут использоваться тугоплавкие оксиды и некоторые тугоплавкие неоксидные соединения: Al 2 O 3 , 3Al 2 O 3 2SiO 2 , Cr 2 O 3 , ZrO 2 , ThO 2 , Y 2 O 3 , Si 3 N 4 , TiN , ZrN , BN, ZrB 2 , TiB 2 , NbB 2 , HfB 2 . В качестве металлической фазы – Fe , Co , Ni , Si , Cu , W, Mo , Cr , Nb , Ta , V, Zr , Hf , Ti . Выбор каждой конкретной керметной пары для получения композита обусловлен возможностью создания стабильной границы раздела в результате твердофазного взаимодействия при температуре, не превышающей температуру плавления наиболее легкоплавкой составляющей пары, либо температуру образования эвтектического расплава.

Механизм торможения разрушения композиционных материалов «хрупкая матрица – пластичный наполнитель» .

Процесс разрушения таких композитов условно можно разделить на две стадии. На первой стадии в ходе нагружения сначала инициируется хрупкое разрушение в матрицевследствие повышенной концентрации напряженийна микронеоднородностях ее структуры: микропорах, границах зерен, крупных неравноосных зернах. При достижении некоторого критического уровня напряжений происходит старт трещины.

На второй стадии распространяющаяся трещина взаимодействует с пластичными металлическими частицами (рис. 2): у ее вершины действуют максимальные напряжения, которые приводят к деформации, удлинению и разрыву металлических частиц. При этом работа разрушения данного композита существенно возрастает по сравнению с таковой характеристикой для неармированного материала. Это происходит за счет затрат энергии трещины на работу пластической деформации всех частиц, попадающих во фронт трещины. В результате сопротивление развитию трещины повышается, поскольку ее берега перекрываются «мостиками связи» из пластичного металла.

Рис. 2. Иллюстрация процесса торможения разрушения в хрупкой матрице:

1 – металлические частицы перед фронтом трещины; 2 – «мостики связи» образованные деформированными

металлическими частицами; 3 – разрушенные металлические частицы; 4 – берега трещины; σ р – растягивающие напряжения

Получение композиционных материалов «хрупкая матрица – пластичный наполнитель» .

Последовательность технологических операций, используемых для получения:

а) Получение композиционной порошковой смеси;

б) Введение в смесь органической связки;

в) Прессование;

г) Удаление органической связки;

д) Спекание;

е) Механическая обработка.

Для обеспечения прессуемости (придания пластичности) смеси порошков компонентов вводят органическую связку путем смешивания с раствором какого-либо органического вещества (поливиниловый спирт, поливинилбутираль , этиленгликоль, каучук и др.) с последующей сушкой для удаления растворителя. В результате выполнения этой операции каждая частица порошковой смеси покрыта тонким слоем пластификатора. Тогда при приложении давления прессования к порошковой смеси, засыпанной в пресс-форму, происходит связывание ее частиц по прослойкам пластификатора. После, путем термообработки изделий в вакууме или в порошковой засыпке из глинозема или сажи, происходит удаление связующего вещества при температуре термодеструкции или сгорания (300 – 400 ° С). После удаления органической связки частицы в объеме изделия удерживаются преимущественно за счет сил трения. Температура спекания композита лимитируется температурой спекания керамической матрицы. Оно проводится в нейтральных газовых средах (аргон, гелий) или в вакууме. В случае необходимости спеченный материал подвергают механической обработке с помощью алмазного инструмента.

Волокнистые КМ можно классифицировать по типу армирующего наполнителя. При их изготовлении в качестве арматуры применяются высокопрочные стеклянные, углеродные, борные, органические волок­на, металлические проволоки, нитевидные кристаллы ряда карбидов, оксидов, нитридов и др.

Армирующие материалы используются в виде моноволокон , нитей, жгутов, сеток, тканей, лент, холстов. Волокнистые КМ можно различать также по способу армирования: ориентированное и стохастическое (случайное). В первом случае композиты обладают четко выраженной анизотропией свойств; во втором - квизиизотропны . Объемная доля наполнителя в волокнистых КМ составляет 60-70%.

По типу матрицы композиты различают:

Полимерные (ПКМ);

Металлические (МКМ );

Керамические (ККМ);

- углерод-углеродные (УУКМ).

Полимерные композитные материалы – это гетерофазные композиционныематериалы с непрерывной полимерной фазой (матрицей), в которой хаотически или в определенном порядке распределены твердые, жидкие или газообразные наполнители. Эти вещества заполняют часть объема матрицы, сокращая тем самым расход дефицитного или дорогостоящего сырья, и (или) модифицируют композицию, придавая ей нужные качества, обусловленные назначением, особенностями технологических процессов производства и переработки, а также условиями эксплуатации изделий. К ним относятся подавляющее большинство пластмасс , резин, лакокрасочных материалов, полимерных компаундов, клеев и др.

В зависимости от типа полимерной матрицы различают наполненные реактопласты, термопласты (по­лиэтилен, поливинилхлорид, капрон и др.), синтетические смолы (полиэфирные, эпоксифенольные и др.) и каучуки. В зависимости от типа наполнителя ПКМ делят на дисперсно-наполненные пластики (наполнитель - дисперсные частицы разнообразной формы, в т. ч. измельченное волокно), армированные пластики (содержат упрочняющий наполнитель непрерывной волокнистой структуры), газонаполненные пластмассы, масло-наполненные каучуки; по природе наполнителя наполненные полимеры подразделяют на асбопластики (наполнитель-асбест), графито-пласты (графит), древесные слоистые пластики (древесный шпон), стеклопластики (стекловолокно), углепластики (углеродное волокно), органопластики (химические волокна), боропластики (борное волокно) и др., а также на гибридные, или поливолокнистые пластики (наполнитель-комбинация различных волокон).

По способу изготовления ПКМ можно разделить на полученные: выкладкой, намоткой, пултрузией , прессованием и др.

Материалы на основе нескольких компонентов, что обусловливает их эксплуатационные и технологичные характеристики. В основе композитов лежит матрица на основе металла, полимера или керамики. Дополнительное армирование выполняется наполнителями в виде волокон, нитевидных кристаллов и различных частиц.

За композитами - будущее?

Пластичность, прочность, широкая сфера применения - вот чем отличаются современные композитные материалы. Что это такое с точки зрения производства? Эти материалы состоят из металлической или неметаллической основы. Для усиления материала используются хлопья большей прочности. Среди можно выделить пластик, который армируется борными, углеродными, стеклянными волокнами, или алюминий, армированный стальными или бериллиевыми нитями. Если комбинировать содержание компонентов, можно получать композиты разной прочности, упругости, стойкости к абразивам.

Основные типы

Классификация композитов основана на их матрице, которая может быть металлической и неметаллической. Материалы с металлической матрицей на основе алюминия, магния, никеля и их сплавов обретают дополнительную прочность за счет волокнистых материалов или тугоплавких частиц, которые не растворяются в основном металле.

Композиты с неметаллической матрицей в основе имеют полимеры, углерод или керамику. Среди полимерных матриц наиболее популярны эпоксидная, полиамидная и фенолформальдегидная. Форма композиции придается за счет матрицы, которая выступает своеобразным связующим веществом. Для упрочнения материалов используются волокна, жгуты, нити, многослойные ткани.

Изготовление композитных материалов ведется на основе следующих технологических методов:

  • пропитка армирующих волокон матричным материалом;
  • формование в пресс-форме лент упрочнителя и матрицы;
  • холодное прессование компонентов с дальнейшим спеканием;
  • электрохимическое нанесение покрытия на волокна и дальнейшее прессование;
  • осаждение матрицы плазменным напылением и последующее обжатие.

Какой упрочнитель?

Во многих сферах промышленности нашли применение композитные материалы. Что это такое, мы уже сказали. Это материалы на основе нескольких компонентов, которые обязательно упрочняются специальными волокнами или кристаллами. От прочности и упругости волокон зависит и прочность самих композитов. В зависимости от вида упрочнителя все композиты можно поделить:

  • на стекловолокниты;
  • карбоволокниты с углеродными волокнами;
  • бороволокниты;
  • органоволокниты.

Упрочнительные материалы могут укладываться в две, три, четыре и больше нити, чем их больше, тем прочнее и надежнее в эксплуатации будут композиционные материалы.

Древесные композиты

Отдельно стоит упомянуть древесный композит. Он получается посредством сочетания сырья разного типа, при этом в качестве основного компонента выступает древесина. Каждый древесно-полимерный композит состоит из трех элементов:

  • частиц измельченной древесины;
  • термопластичного полимера (ПВХ, полиэтилена, полипропилена);
  • комплекса химических добавок в виде модификаторов - их в составе материала до 5 %.

Самый популярный вид древесных композитов - это композитная доска. Ее уникальность в том, что она объединяет в себе свойства и древесины, и полимеров, что существенно расширяет сферу ее применения. Так, доска отличается плотностью (на ее показатель влияет базовая смола и плотность древесинных частичек), хорошим сопротивлением на изгиб. При этом материал экологичный, сохраняет текстуру, цвет и аромат натурального дерева. Использование композитных досок абсолютно безопасно. За счет полимерных добавок композитная доска обретает высокий уровень износостойкости и влагостойкости. Ее можно использовать для отделки террас, садовых дорожек, даже если на них приходится большая нагрузка.

Особенности производства

Древесные композиты имеют особенную структуру за счет сочетания в них полимерной основы с древесиной. Среди материалов подобного типа можно отметить древесно-стружечные, разной плотности, плиты из ориентированной щепы и древесно-полимерный композит. Производство композитных материалов данного типа ведется в несколько этапов:

  1. Измельчается древесина. Для этого используются дробилки. После дробления древесину просеивают и делят на фракции. Если влажность сырья - выше 15 %, его обязательно высушивают.
  2. Дозируются и смешиваются основные компоненты в определенных пропорциях.
  3. Готовое изделие прессуется и форматируется для обретения товарного вида.

Основные характеристики

Мы описали самые популярные полимерные композитные материалы. Что это такое, теперь понятно. Благодаря слоистой структуре есть возможность армирования каждого слоя параллельными непрерывными волокнами. Стоит отдельно сказать о характеристиках современных композитов, которые отличаются:

  • высоким значением временного сопротивления и предела выносливости;
  • высоким уровнем упругости;
  • прочностью, которая достигается армированием слоев;
  • за счет жестких армирующих волокон композиты обладают высокой стойкостью к напряжениям на разрыв.

Композиты на основе металлов отличаются высокой прочностью и жаропрочностью, при этом они практически неэластичны. За счет структуры волокон уменьшается скорость распространения трещин, которые иногда появляются в матрице.

Полимерные материалы

Полимерные композиты представлены в многообразии вариантов, что открывает большие возможности по их использованию в разных сферах, начиная от стоматологии и заканчивая производством авиационной техники. Наполнение композитов на основе полимеров выполняется разными веществами.

Наиболее перспективными сферами использования можно считать строительство, нефтегазовую промышленность, производство автомобильного и железнодорожного транспорта. Именно на долю этих производств приходится порядка 60 % объема использования полимерных композиционных материалов.

Благодаря высокой устойчивости полимерных композитов к коррозии, ровной и плотной поверхности изделий, которые получаются методом формования, повышается надежность и долговечность эксплуатации конечного продукта.

Рассмотрим популярные виды

Стеклопластики

Для армирования этих композиционных материалов используются стеклянные волокна, сформованные из расплавленного неорганического стекла. Матрица основывается на термоактивных синтетических смолах и термопластичных полимерах, которые отличают высокая прочность, низкая теплопроводность, высокие электроизоляционные свойства. Изначально они использовались при производстве антенных обтекателей в виде куполообразных конструкций. В современном мире стеклопластики широко применяются в строительной сфере, судостроении, производстве бытового инвентаря и спортивных предметов, радиоэлектронике.

В большинстве случаев стеклопластики производятся на основе напыления. Особенно эффективен этот метод при мелко- и среднесерийном производстве, например корпусов катеров, лодок, кабин для автомобильного транспорта, железнодорожных вагонов. Технология напыления удобна экономичностью, так как не требуется раскраиваться стекломатериал.

Углепластики

Свойства композитных материалов на основе полимеров дают возможность использовать их в самых разных сферах. В них в качестве наполнителя используются углеродные волокна, получаемые из синтетических и природных волокон на основе целлюлозы, пеков. Волокно обрабатывается термически в несколько этапов. По сравнению со стеклопластиками углепластики отличаются более низкой плотностью и более высоким при легкости и прочности материала. Благодаря уникальным эксплуатационным свойствам углепластики находят применение в машино- и ракетостроении, производстве космической и медицинской техники, велосипедов и спортивных принадлежностей.

Боропластики

Это многокомпонентные материалы, в основе которых лежат борные волокна, введенные в термореактивную полимерную матрицу. Сами волокна представлены мононитями, жгутами, которые оплетаются вспомогательной стеклянной нитью. Большая твердость нитей обеспечивает прочность и стойкость материала к агрессивным факторам, но при этом боропластики отличаются хрупкостью, что осложняет обработку. Борные волокна стоят дорого, поэтому сфера применения боропластиков ограничена в основном авиационной и космической промышленностью.

Органопластики

В этих композитах в качестве наполнителей выступают в основном синтетические волокна - жгуты, нити, ткани, бумага. Среди особенных свойств этих полимеров можно отметить низкую плотность, легкость по сравнению со стекло- и углепластиками, высокую прочность при растяжении и высокое сопротивление ударам и динамическим нагрузкам. Этот композиционный материал широко используется в таких сферах, как машино-, судо-, автостроение, при производстве космической техники, химическом машиностроении.

В чем эффективность?

Композитные материалы за счет уникального состава могут использоваться в самых разных сферах:

  • в авиации при производстве деталей самолетов и двигателей;
  • космической технике для производства силовых конструкций аппаратов, которые подвергаются нагреванию;
  • автомобилестроении для создания облегченных кузовов, рам, панелей, бамперов;
  • горной промышленности при производстве бурового инструмента;
  • гражданском строительстве для создания пролетов мостов, элементов сборных конструкций на высотных сооружениях.

Использование композитов позволяет увеличить мощность двигателей, энергетических установок, уменьшая при этом массу машин и оборудования.

Какие перспективы?

По мнению представителей сферы промышленности России, композиционный материал относится к материалам нового поколения. Планируется, что к 2020 году вырастут объемы внутреннего производства продукции композитной отрасли. Уже сейчас на территории страны реализуются пилотные проекты, направленные на разработку композитных материалов нового поколения.

Применение композитов целесообразно в самых разных сферах, но наиболее эффективно оно в отраслях, связанных с высокими технологиями. Например, сегодня ни один летательный аппарат не создается без использования композитов, а в некоторых из них используется порядка 60 % полимерных композитов.

Благодаря возможности совмещения различных армирующих элементов и матриц можно получить композицию с определенным набором характеристик. А это, в свою очередь, дает возможность применять эти материалы в самых разных сферах.

Использование композитных материалов в строительстве

Недорогой и разносторонний, бетон является одним из лучших строительных материалов во многих предложениях. Являясь настоящим композитом, типичный бетон состоит из гравия и песка, связанных вместе в матрице из цемента, с металлической арматурой, обычно добавляемой для усиления прочности. Бетон превосходно ведет себя при сжатии, но становится хрупким и непрочным при растяжении. Растягивающие напряжения, так же как и пластическая усадка во время отверждения, приводят с трещинам, которые поглощают воду, что, в конечном счете, приводит к коррозии металлической арматуры и существенной потере монолитности бетона при разрушении металла.

Композитная арматура утвердилась на строительном рынке благодаря доказанному сопротивлению коррозии. Новые и обновленные конструкторские руководства и тестовые протоколы облегчают инженерам выбор армированных пластиков.

Усиленные волокнами пластики (стеклопластик, базальтопластик) с давних пор рассматривались как материалы, позволяющие улучшить характеристики бетона.

За последние 15 лет композитная арматура перешла от экспериментального прототипа к эффективному заменителю стали во многих проектах, особенно в связи с повышением цен на сталь.

Композитные сетки в сборных бетонных панелях: высокий потенциал углеродно-эпоксидные сетки C-GRID заменяют традиционную сталь или арматуру в сборных структурах в качестве вторичного армирования.

C-GRID является крупной сеткой из жгутов на основе углерода/эпоксидной смолы. Используется как замена вторичной стальной армирующей сетки в бетонных панелях и архитектурных приложениях. Размер сетки меняется как в зависимости от бетона и типа заполнителя, так и от требований к прочности панели

Использование коротких волокон в бетоне для улучшения его свойств было признанной технологией на протяжении десятилетий, и даже веков, если принять во внимание, что в Римской Империи строительные растворы были армированы конским волосом. Армирование волокнами усиливает прочность и упругость бетона (способность к пластической деформации без разрушения) посредством удерживания части нагрузки при повреждении матрицы и препятствуя росту трещин.

Добавление волокон позволяет материалу деформироваться пластично и выдерживать растягивающие нагрузки.

Усиленный волокнами бетон был использован для изготовления этих предварительно напряженных мостовых балок. Использование арматуры не потребовалось из-за высокой эластичности и прочности материала, которая была придана ему стальными армирующими волокнами, добавленными в бетонную смесь.

Алюминиевый композитный материал - это панель, состоящая из двух алюминиевых листов и пластикового либо минерального наполнителя между ними. Композитная структура материала придаёт ему лёгкость и высокую прочность в сочетании с упругостью и стойкостью к излому. Химическая и лакокрасочная обработка поверхности обеспечивает материалу превосходную устойчивость к коррозии и температурным колебаниям. Благодаря сочетанию этих уникальных свойств, алюминиевый композитный материал является одним из наиболее востребованных в строительстве.

Алюминиевый композит обладает рядом существенных преимуществ, обеспечивающих ему растущую с каждым годом популятность как отделочного материала.

Минимальный вес в сочетании с высокой жёсткостью. Панели алюминиевого композитного материала отличаются низким весом, обусловленным применением алюминиевых покрывающих листов и облегченного центрального слоя в сочетании с высокой жесткостью, задаваемой комбинацией вышеуказанных материалов. В условиях применения на фасадных конструкциях данное обстоятельство выгодно отличает алюминиевые композитные материалы от альтернативных материалов, таких как листовые алюминий и сталь, керамический гранит, фиброцементные плиты. Применение алюминиевого композитного материала значительно снижает общий вес конструкции вентилируемого фасада. композитный бетонный алюминиевый металлический

Алюминиевый композитный материал способен противостоять скручиванию. Причина - в нанесении верхнего слоя методом прокатки. Плоскостность обеспечивается применением прокатки вместо обычной прессовки, которая дает высокую равномерность нанесения слоя. Максимальная пологость составляет 2мм на 1220 мм длины, что составляет 0,16% от последней.

  • - Устойчивость лакокрасочного покрытия к воздействию окружающей среды. Благодаря чрезвычайно устойчивому многослойному покрытию материал в течение длительного времени не теряет интенсивность окраски под воздействием солнечного цвета и агрессивных компонентов атмосферы.
  • - Широкий выбор цветов и фактур. Материал выпускается с покрытием, выполненным лакокрасками: солидные цвета и цвета «металлик» в любом диапазоне цветов и оттенков, покрытиями под камень и дерево. Помимо этого выпускаются панели с напылением «хром», «золото», панели с фактурной поверхностью, панели с полированным покрытием из нержавеющей стали, титана, меди.

Панели алюминиевого композитного материала имеют сложную структуру, образованную алюминиевыми листами и наполнителем центрального слоя. Сопряжение данных материалов обеспечивает панелям жесткость в сочетании с эластичностью, что делает алюминиевые композитные материалы устойчивым к нагрузкам и деформациям, создающимся окружающей средой. Материал не утрачивает своих свойств в течение чрезвычайно длительного времени.

Устойчивость материала к коррозии определяется применением в структуре панели листов алюминиевого сплава, защищенного многослойным лакокрасочным покрытием. В случае повреждения покрытия поверхность листа защищается образованием оксидной пленки

Композиционная структура панели алюминиевого композитного материала обеспечивает хорошую звукоизоляцию, поглощая звуковые волны и вибрации.

Панели легко поддаются таким видам механической обработки как гибка, резка, фрезеровка, сверление, вальцовка, сварка, склеивание, без ущерба покрытию и нарушению структуре материала. При нагрузках, возникающих в процессе сгибания панелей, в том числе в радиус не отмечается расслаивание панелей либо нарушения поверхностных слоев, такие как растрескивание алюминиевых листов и лакокрасочного покрытия. При производстве на заводе панели защищаются от механических повреждений специальной пленкой, удаляемой после завершения монтажных работ.

Панели легко принимают практически любую заданную форму, например радиусную. Пригодность материала к спаиванию позволяет добиваться сложной геометрии изделий, что невозможно ни с одним другим облицовочным материалом, кроме алюминия, перед которым алюминиевые композитные материалы значительно выигрывает по весу.

Применение алюминиевого композитного материала позволяет создавать панели облицовки различных размеров и форм, делает данный материал незаменимым при решении сложных архитектурных задач.

  • - Длительный срок службы. алюминиевого композитного материала в течение длительного времени устойчивы к воздействию внешней среды, таким как солнечный свет, атмосферные осадки, ветровые нагрузки, колебания температуры, благодаря применению устойчивого покрытия и достигнутому в материале сочетанию жесткости и эластичности. Расчетный срок службы панелей на открытом воздухе составляет около 50 лет.
  • - Минимальный уход в процессе эксплуатации. Наличие высококачественного покрытия способствует самоочищению панелей от внешних загрязнений. Так же панели легко моются не агрессивными очистителями.

Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами.

У первых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.

Композиционный материал конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы в виде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия.

Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

Все эти комбинированные материалы объединены в систему. Система усиления из композитов используется практически для всех видов конструкций:

  • 1. Бетонных и железобетонных
  • 2. Металлических (в том числе стальных и алюминиевых)
  • 3. Деревянных
  • 4. Кирпичной (каменной) кладкой.

Также они обеспечивают целый спектр потребностей жизнеобеспечения:

  • 1. Защита от взрывов, взломов и повреждения.
  • 2. Усиление конструкций
  • 3. Баллистическая защита стен и защита от взрывов.
  • 4. Защита кабелей и проводов от взрывов

Рассмотрим достоинства и недостатки композитных материалов. Достоинство:

  • 1. Коррозийная стойкость
  • 2. Прочность на растяжение
  • 3. Простота применения
  • 4. Низкая стоимость рабочей силы
  • 5. Короткое время реализации
  • 6. Отсутствие размерных ограничений
  • 7. Экстремально высокая усталостная прочность
  • 8. Не требует консервации
  • 9. Возможность использования конструкций из разного материала

Недостатки:

  • 1. Относительная стоимость материала
  • 2. Ограничение сферы применения

Из выше изложенных достоинств и недостатков можно сделать вывод: что по сравнению с обычными материалами, композитные имеют практически единственный недостаток-это их достаточно высокая цена. Поэтому может сложиться мнение, что этот метод является дорогостоящим, однако если сравнивать объём расхода материалов-стали на усиление идёт больше чем композитов примерно в тридцать раз. Другими преимуществами композитных материалов является значительное уменьшение стоимости усилия из-за сокращения времени производства работ, использование рабочей силы и механического оборудования. Следовательно композитные системы усиления являются основными конкурентами перед применением стали.

Однако, не смотря на преимущества перед обычными материалами, композиционные материалы имеют характерные для них минусы. К ним следует отнести низкую огнестойкость, изменение свойств при воздействии ультрафиалетового излучения, возможное трещинообразование при изменении объёма в условиях ограничения свободы деформаций. Физико-механические свойства этих материалов делают их восприимчивыми к температурным колебаниям. При высоких температурах они склонны к значительным деформациям ползучести.