ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Как рассчитать дебит скважины. Выбор режима работы газовой скважины Зачем нужно делать расчет дебита скважины

Газовые скважины эксплуатируют фонтанным способом, т.е. за счет использования энергии пласта. Расчет лифта сводится в определении диаметра фонтанных труб. Его можно определить из условий выноса забоя твердых и жидких частиц или обеспечить максимальное устьевое давление (минимальных потерь давления в стволе скважины при заданном дебите).

Вынос твердых и жидких частиц зависит от скорости газа. По мере подъема газа в трубах скорость возрастает вследствие увеличения объема газа при уменьшении давления. Расчет выполняют для условий башмака фонтанных труб. Глубину спуска труб в скважину принимают с учетом продуктивной характеристики пласта и технологического режима эксплуатации скважины.

Целесообразно спускать трубы до нижних отверстий перфорации. Если трубы спущены до верхних отверстий перфораций, то скорость газового потока в эксплутационной колонне напротив перфорированного продуктивного пласта снизу вверх возрастает от нуля до некоторого значения. Значит, в нижней части и вплоть до башмака не обеспечивается вынос твердых и жидких частиц. Поэтому нижняя часть пласта отсекается песчаноглинистой пробкой или жидкостью, при этом дебет скважины уменьшается.

Используем закон газового состояния Менделеева - Клапейрона

При заданном дебите скважины скорость газа у башмака труб равна:

где Q 0 - дебит скважины при стандартных условиях (давление P 0 = 0,1 МПа, температура T 0 = 273 К), м 3 /сут.;

P З, T З - давление и температура газа на забое, Па, К;

zo, zз - коэффициент сверхсжимаемости газа соответственно при условиях T 0 , P 0 и Т, Р;

F - площадь проходного сечения фонтанных труб, м 2

d - диаметр (внутренний) фонтанных труб, м.

Исходя из формул для расчета критической скорости выноса твердых и жидких частиц и согласно опытным данным, минимальная скорость v кр выноса твердых и жидких частиц с забоя составляет 5 - 10 м/с. Тогда максимальный диаметр труб, при котором частицы породы и жидкости выносятся на поверхность:

При эксплуатации газоконденсатных скважин из газа выделяют жидкие углеводороды (газоконденсат), которые создают в фонтанных трубах двухфазный поток. Чтобы предотвратить накопление жидкости на забое и снижение дебита, газоконденсатная скважина должна эксплуатироваться с дебитом не меньше минимально допустимого, обеспечивающего вынос газокондесата на поверхность. Величину этого дебита определяют по эмпирической формуле:

где М - молекулярная масса газа. Тогда диаметр труб:

При определении диаметра фонтанных труб, из условия обеспечения минимальных потерь давления в стволе скважины, необходимо предусмотреть их снижения в стволе до минимальных с тем, чтобы газ поступал на устья скважины с возможным большим давлением. Тогда уменьшатся затраты на транспорт газа. Забойное и устьевое давления газовой скважины увязаны между собой формулой Г.А.Адамова.

где P 2 - давление на устье скважины, МПа;

e - основание натуральных логарифмов;

s - показатель степени, равный s = 0,03415 с г L / (Т ср z ср);

с г - относительная плотность газа по воздуху;

L - длина фонтанных труб, м;

d - диаметр труб, м;

Т ср - средняя температура газа в скважине, К;

Qo - дебит скважины при стандартных условиях, тыс.м 3 /сут.;

л - коэффициент гидравлического сопротивления;

z ср - коэффициент сверхсжимаемости газа при средней температуре Т ср и среднем давлением Р ср = (Pз + P 2) / 2.

Так как P З неизвестно, то z ср определяет методом последовательных приближений. Тогда, если дебит скважины Qo и соответствующие ему забойное давление P З известны по результатам газодинамических исследований, при заданном давлении на устье P 2 диаметр фонтанных труб определяем из формулы в виде:

Фактический диаметр фонтанных труб выбирают с учетом стандартных диаметров. Отметим, что при расчетах, исходя из двух условий, определяющий фактор - вынос частиц породы и жидкости на поверхность. Если же дебиты скважины ограничиваются другими факторами, то расчет ведется из условия снижения потерь давлений до минимально возможной величины с технологической и технической точек зрения. Иногда при заданном диаметре труб, используя выписанные формулы, определяют дебит скважины или потери давления в стволе.

Расчет лифта сводится в определении диаметра насосно-компрессорных труб (Таблица 18 А Приложения А). Исходные данные: дебит скважины при стандартных условиях Q o = 38,4 тыс. м 3 /сут.= 0,444 м 3 /с (давление Р о = 0,1 МПа, температура Т о = 293 К); забойное давление Р з = 10,1 МПа; глубина скважины Н = 1320 м; коэффициент сжимаемости газа при стандартных условиях z о = 1; критическая скорость выноса твердых и жидких частиц на поверхность х кр = 5 м /с.

1) Температура скважины Т определим по формуле:

Т = Н? Г, (19)

где Н - глубина скважины, м

Г - геотермический градиент.

2) Коэффициент сжимаемости газа z з определим по кривой Брауна (Рисунок 6 Б Приложения Б). Для этого найдем приведенные давление Р пр и температуру Т пр:

где Р пл - пластовое давление, МПа

Р кр - критическое давление, МПа

Для метана Р кр = 4,48 МПа

где Т кр - критическая температура, К

Для метана Т кр = - 82,5? С = 190,5 К

Коэффициент сжимаемости газа на забое z з = 0,86 определяем по рисунку 6 Б (Приложение Б).

1) Диаметр насосно-компре...

  • - суточный объем газа q, нм 3 /сут.,
  • - начальное и конечное давление в газопроводе Р 1 и Р 2 , МПа;
  • - начальная и конечная температура t 1 и t 2 , о С;
  • - концентрация свежего метанола C 1 , % масс.

Расчет индивидуальной нормы расхода метанола на технологический процесс при подготовке и транспортировке природного и нефтяного газа по каждому участку ведется по формуле:

H Ti = q ж + q г + q к, (23)

где H Ti - индивидуальная норма расхода метанола по i-му участку;

q ж - количество метанола, необходимое для насыщения жидкой фазы;

q г - количество метанола, необходимое для насыщения газообразной фазы;

q к - количество метанола, необходимое для насыщения конденсата.

Количество метанола q ж (кг/1000 м 3), необходимое для насыщения жидкой фазы, определяется по формуле:

где ДW - количество отбираемой влаги из газа, кг/1000 м 3 ;

С 1 - весовая концентрация вводимого метанола, %;

С 2 - весовая концентрация метанола в воде (концентрация отработанного метанола в конце участка, на котором образуются гидраты), %;

Из формулы 24 следует, что для определения количества метанола для насыщения жидкой фазы необходимо знать влажность газа и концентрацию метанола в двух точках: в начале и в конце участка, на котором возможно образование гидратов.

Влажность углеводородных газов с относительной плотностью (по воздуху) 0,60, не содержащих азот и насыщенных пресной водой.

Определив влажность газа в начале участка W 1 и в конце участка W 2, находят количество влаги ДW, выделяющиеся из каждых 1000 м 3 проходящего газа:

ДW = W 2 - W 1 (25)

Определим влажность по формуле:

где Р - давление газа, МПа;

А - коэффициент, характеризующий влажность идеального газа;

В - коэффициент, зависящий от состава газа.

Для определения концентрации отработанного метанола С 2 вначале определяют равновесную температуру Т (° С) гидратообразования. Для этого используют равновесные кривые образования гидратов газов различной плотности (Рисунок 7 Б Приложения Б) на основе среднего давления на участке подачи метанола:

где Р 1 и Р 2 - давление в начале и конце участка, МПа.

Определив Т, находят величину снижения ДТ равновесной температуры, необходимую для предотвращения гидратообразования:

ДТ = Т - Т 2 , (28)

где Т 2 - температура на конце участка, на котором образуются гидраты, ° С.

После определения ДТ, по графику на рисунке 8 Б (Приложение Б) находим концентрацию обработанного метанола С 2 (%).

Количество метанола (q г, кг/1000 м 3), необходимое для насыщения газообразной среды, определяется по формуле:

q г = к м · С 2 , (29)

где к м - отношение содержания метанола, необходимое для насыщения газа, к концентрации метанола в жидкости (растворимость метанола в газе).

Коэффициент к м определяется для условий конца участка, на котором возможно образование гидратов, по рисунку 9 Б (Приложение Б) для давления Р 2 и температуры Т 2 .

Количество подачи метанола (Таблицы 20 А - 22 А Приложения А) с учетом дебита определяется по формуле.

Основным элементом системы водоснабжения является источник водоснабжения. Для автономных систем в частных домовладениях, на дачах или фермерских хозяйствах в качестве источников используют колодцы или скважины. Принцип водоснабжения прост: водоносный слой наполняет их водой, которая с помощью насоса подается пользователям. При длительной работе насоса, какова бы ни была его мощность, он не может подать воды больше, чем водонос отдает в трубу.

Любой источник имеет предельный объем воды, которую он может отдать потребителю за единицу времени.

Определения дебита

После бурения, проводившая работу организация предоставляет протокол испытания, либо паспорт на скважину, в который вносится все необходимые параметры. Однако, при бурении для домохозяйств, подрядчики часто вносят в паспорт приблизительные значение.

Перепроверить достоверность информации или рассчитать дебит вашей скважины можно своими руками.

Динамика, статика и высота столба воды

Прежде чем приступить к измерениям, нужно понять, что такое статический и динамический уровень воды в скважине, а также высота столба воды в скважинной колонне. Замер данных параметров необходим не только для расчета производительности скважины, но и для правильного выбора насосного агрегата для системы водоснабжения.

  • Статический уровень – это высота водяного столба при отсутствии водозабора. Зависит от внутрипластового давления и устанавливается во время простоя (как правило не менее часа);
  • Динамический уровень – установившейся уровень воды во время водозабора, то есть когда приток жидкости равняется оттоку;
  • Высота столба – разница между глубиной скважины и статическим уровнем.

Динамика и статика измеряется в метрах от земли, а высота столба от дна скважины

Произвести измерение можно с помощью:

  • Электроуровнемера;
  • Электрода, замыкающего контакт при взаимодействии с водой;
  • Обычного грузика, подвязанного к веревке.

Замер с помощью сигнализирующего электрода

Определение производительности насоса

При расчете дебита необходимо знать производительность насоса во время откачки. Для этого можно воспользоваться следующими способами:

  • Посмотреть данные расходомера или счетчика;
  • Ознакомиться с паспортом на насос и узнать производительность по рабочей точке;
  • Посчитать приблизительной расход по напору воды.

В последнем случае, необходимо на выходе водоподъемной трубы закрепить в горизонтальном положении трубу меньшего диаметра. И произвести следующие замеры:

  • Длину трубы (мин 1,5 м.) и ее диаметр;
  • Высоту от земли до центра трубы;
  • Длину выброса струи от конца трубы до точки падения на землю.

После получения данных необходимо сопоставить их по диаграмме.


Сопоставьте данные по аналогии с примером

Измерение динамического уровня и дебита скважины нужно производить насосом с производительностью не менее вашего расчетного пикового расхода воды.

Упрощенный расчет

Дебит скважины – это отношение произведения интенсивности водооткачки и высоты водяного столба к разности между динамическим и статическим водными уровнями. Для определения дебита скважины определения используется формула:

Dт =(V/(Hдин-Нст))*Hв , где

  • Dт –искомый дебит;
  • V – объем откачиваемой жидкости;
  • Hдин – динамический уровень;
  • Hст – статический уровень;
  • Нв – высота столба воды.

Например, мы имеем скважину глубиной 60 метров; статика которой составляет 40 метров; динамический уровень при работе насоса производительностью 3 куб.м/час установился на отметке 47 метров.

Итого, дебит составит: Dт = (3/(47-40))*20= 8,57 куб.м/час.

Упрощенный метод измерений включает замер динамического уровня при работе насоса с одной производительностью, для частного сектора этого может быть достаточно, но для определения точной картины – нет.

Удельный дебит

С увеличением производительности насоса, динамический уровень, а соответственно и фактический дебит снижается. Поэтому более точно водозабор характеризует коэффициент продуктивности и удельный дебит.

Для вычисления последнего следует произвести не один, а два замера динамического уровня при разных показателях интенсивности водозабора.

Удельный дебит скважины – объем воды, выдаваемой при снижении ее уровня за каждый метр.

Формула определяет его как отношение разности большего и меньшего значений интенсивности водозабора к разности между величинами падения водного столба.

Dуд=(V2-V1)/(h2-h1), где

  • Dуд – удельный дебит
  • V2 – объем откачиваемой воды при втором водозаборе
  • V1 – первичный откачиваемый объем
  • h2 – снижение уровня воды при втором водозаборе
  • h1 – снижение уровня при первом водозаборе

Возвращаясь к нашей условной скважине: при водозаборе с интенсивностью 3 куб.м/час, разница между динамикой и статикой составила 7 м.; при повторном замере с производительностью насоса в 6 куб.м/час разница составила 15 м.

Итого, удельный дебит составит: Dуд =(6-3)/(15-7)= 0,375 куб.м/час

Реальный дебит

Расчет строится на основании удельного показателя и расстоянии от поверхности земли до верхней точки фильтровальной зоны, учитывая условие, что насосный агрегат не будет погружен ниже. Данный расчет максимально соответствует реальности.

D т = (H ф- H ст ) * D уд, где

  • Dт –дебит скважины;
  • Hф – расстояние до начала фильтровальной зоны (в нашем случае примем за 57 м.);
  • Hст – статический уровень;
  • Dуд – удельный дебит.

Итого, реальный дебит составит: Dт =(57-40)*0,375= 6,375 куб.м/час.

Как видно, в случае с нашей воображаемой скважиной, разница между упрощенным и последующем измерением составила почти 2,2 куб.м/час в сторону уменьшения производительности.

Снижение дебита

В ходе эксплуатации производительность скважины может уменьшаться, основной причиной снижения дебита является засорение, а для его увеличения до прежнего уровня необходимо производить очистку фильтров.

Со временем рабочие колеса центробежного насоса могут износиться, особенно если ваша скважина на песке, в этом случае его производительность станет ниже.

Однако, прочистка может не помочь, если изначально у вас оказалась малодебитная водяная скважина. Причины этого разные: диаметр эксплуатационной трубы недостаточен, она попала мимо водоносного слоя или он содержит мало влаги.

1

Технологическая операция вертикального гидроразрыва пласта (ГРП) часто применяется на газодобывающих промыслах для интенсификации притока флюида к скважине. Широкое практическое применение ГРП стимулирует научные и промысловые исследования по изучению закономерностей фильтрации газа к скважинам с трещинами гидроразрыва . В предлагаемой статье выводится новая формула для расчета дебита газодобывающей скважины после ГРП, расчеты по которой осуществляются намного проще, нежели по формулам . В то же время предлагаемая авторами альтернативная формула дает результаты, отклоняющиеся от результатов в пределах не более 3-5%, что позволяет рекомендовать альтернативную формулу к практическому применению.

1. Геометрическая модель призабойной зоны и трещины гидроразрыва

Следуя работе Каневской Р.Д. и Каца Р.М. вертикальную трещину гидроразрыва пласта с конечной толщиной и проводимостью моделируем в виде эллипса с полуосями l и w (рис. 1).

Рис. 1 . Схема области фильтрации:
1 - пласт; 2 - трещина; 3 - призабойная зона пласта.
a 2 - b 2 = l 2 - w 2 = f 2 ; f - фокусное расстояние конфокальных эллипсов;
r c - радиус скважины. Приток флюида в скважину осуществляется только через трещину

Границу призабойной зоны пласта (ПЗП) моделируем эллипсом, конфокальным к эллиптической трещине. Геометрические размеры и фокусное расстояние f этих двух конфокальных эллипсов будут связаны уравнением

Проницаемости наполнителя трещины 2, призабойной зоны пласта 3 и незагрязненной (удаленной от скважины) части пласта ℓ будем обозначать соответственно как k 2 , k 3 и k 1 . Установившуюся фильтрацию флюида во всей области фильтрации на рис. 1, как и в , считаем подчиняющейся линейному закону Дарси. Вдоль эллиптических границ трещины и ПЗП давление принимается постоянным - названные границы при выводе формулы для дебита скважины принимаются за изобары.

Для вывода формулы дебита скважины с трещиной ГРП предварительно рассчитаем фильтрационные потоки в каждой отдельной части области фильтрации на рис. 1.

2. Расчет притока флюида в скважину через вертикальную трещину гидроразрыва

При расчете притока флюида в скважину из вертикальной эллиптической трещины в в начале координат размещают точечный сток, мощность которого и определяет искомый дебит скважины с ГРП. Однако радиус скважины ≈ 10-15 см, а наибольшая толщина (раскрытие) трещины ≈ 1 см. При таком соотношении размеров радиуса скважины и толщины трещины, моделировать течение к скважине из трещины гидроразрыва при помощи точечного стока в начале координат проблематично, что, по-видимому, и привело авторов к сложному расчетному алгоритму.

Чтобы избежать вычислительных трудностей, связанных с использованием точечного стока, в данной работе на этапе расчета притока флюида в скважину из трещины гидроразрыва последняя моделируется в виде двух одинаковых тонких протяженных прямоугольников с размерами ℓ′ (длина) и 2w′ (ширина). Прямоугольники непосредственно примыкают к скважине по разные стороны от нее и их оси расположены на одной прямой, проходящей через центр скважины. Эллиптическая трещина отождествляется с прямоугольной, если вне кругового контура скважины они обладают равными длинами и площадями поперечных сечений. Исходя из такого определения тождественности двух форм трещин, для геометрических параметров трещин получаем следующие уравнения связи:

(2)

Рассмотрим приток флюида к скважине через трещину гидроразрыва прямоугольной формы. Установившаяся плоскопараллельная фильтрация совершенного газа, как известно, описывается решениями уравнения Лапласа

(3)

относительно функции , где p - давление. Если решение уравнения (3) при соответствующих граничных условиях будет найдено, то поле скоростей найдется из закона Дарси по формуле

В решаемой задаче расчетная область - прямоугольник на сторонах которого задаются следующие граничные условия:

Решение краевой задачи (3)‒(6) строится стандартным методом Фурье и имеет вид

Неопределенные коэффициенты A n в формуле (7) находим из последнего граничного условия (6). С помощью известных формул для коэффициентов ряда Фурье, получим, что

(9)

Подстановка коэффициентов A n из формул (9) в (7) приводит к следующему выражению для функции :

В формуле (10) осталась лишь одна неизвестная величина - скорость фильтрации на границе x = 0 - на входе потока из трещины гидроразрыва в ствол скважины. Для определения неизвестной величины v вычислим среднее значение функции Ф(x, y) на границе x = 0. На основании формулы (10) для среднего значения

(11)

найдем, что

(12)

С другой стороны, на границе x = 0 давление должно быть равно забойному давлению и, следовательно, должно выполняться равенство . С учетом последнего замечания
из (12) для неизвестной величины получим следующее значение:

(13)

где .

Учитывая, что приток флюида в скважину (подсчитанный для атмосферного давления и пластовой температуры) через трещину гидроразрыва в пласте с толщиной b′ равен величине , для искомой величины дебита Q скважины окончательно получим выражение

(14)

3. Расчет притока флюида к вертикальной эллиптической трещине гидроразрыва от конфокальной границы ПЗП

Рассмотрим теперь фильтрацию в области 3 между трещиной гидроразрыва и эллиптической границей призабойной зоны. На этом этапе исследования форму трещины примем в виде удлиненного эллипса с осями 2l (длина трещины) и 2w (параметр, характеризующий раскрытие трещины). Формула для притока совершенного газа от эллиптической границы ПЗП к эллиптической границе трещины хорошо известна и имеет вид:

(15)

4. Расчет притока флюида к эллиптической границе ПЗП от кругового контура питания

Теперь рассмотрим фильтрацию в 1-й области между эллиптической границей призабойной зоны и круговым контуром питания с радиусом R. Формулу для притока флюида к эллиптической границе ПЗП можно получить методом ЭГДА, исходя из формулы (4)-(25) справочника по расчету электрических емкостей. Формула (4)-(25) в терминах рассматриваемой задачи фильтрации на основании ЭГДА запишется следующим образом:

(16)

где K(k) и K(k′) = K′(k) - полные эллиптические интегралы 1-го рода с модулями k и соответственно, а F(ψ; k) - неполный эллиптический интеграл первого рода. Модуль k и аргумент ψ вычисляются через параметры уравнений границ ПЗП и радиус R кругового контура питания по следующим формулам:

(17)

5. Вывод формулы для расчета дебита газодобывающей скважины с вертикальной трещиной гидроразрыва пласта

Формулы (14), (15) и (16) дают систему трех линейных уравнений с тремя неизвестными - дебитом Q и давлениями P трщ и P ПЗП. Решая методом исключения эту систему уравнений, для расчета дебита скважины с вертикальной трещиной гидроразрыва в ПЗП получим следующую формулу:

Составляя отношение дебита скважины после ГРП к дебиту этой же скважины без ГРП, для коэффициента эффективности ГРП получаем следующее выражение:

Сопоставительные расчеты дебитов скважин с ГРП по формулам (18) и выявили, что максимальные относительные расхождения не превышают 3-5%. В то же время в вычислительном плане формула (18) для практики предпочтительнее, так как она имеет более простую программную реализацию.

На практике формулы (18) и (19) позволяют рассчитать прогнозный дебит скважины, на которой планируется проведение операции гидроразрыва пласта, и, в конечном итоге, оценить ожидаемую технико-экономическую эффективность от проведения ГРП.

СПИСОК ЛИТЕРАТУРЫ

  1. Технология проектирования гидроразрыва пласта как элемента системы разработки газоконденсатных месторождений / О.П. Андреев [и др.]. - М.: ООО «Газпром экспо», 2009. -
    183 с.
  2. Кадет В.В., Селяков В.И. Фильтрация флюида в среде, содержащей эллиптическую трещину гидроразрыва // Изв. вузов. Нефть и газ. - 1988. - № 5. - С. 54-60.
  3. Каневская Р.Д., Кац Р.М. Аналитические решения задач о притоке жидкости к скважине с вертикальной трещиной гидроразрыва и их использование в численных моделях фильтрации //
    Изв. РАН. МЖГ. - 1996. - № 6. - С. 59-80.
  4. Производительность скважин. Руководство Хеманта Мукерджи. - М.: 2001.
  5. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика. - Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с.
  6. Иоссель Ю.Я., Кочанов Э.С., Струнский М.Г. Расчет электрической емкости. - Л.: Энергоиздат, 1981. - 288 с.

Библиографическая ссылка

Гасумов Р.А., Ахмедов К.С., Толпаев В.А. РАСЧЕТ ДЕБИТА ГАЗОДОБЫВАЮЩЕЙ СКВАЖИНЫ С ВЕРТИКАЛЬНОЙ ТРЕЩИНОЙ ГИДРОРАЗРЫВА ПЛАСТА // Успехи современного естествознания. – 2011. – № 2. – С. 78-82;
URL: http://natural-sciences.ru/ru/article/view?id=15932 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» 1

Методики определения предельных безводных дебитов газовых скважин при наличии экрана и интерпретация результатов исследования таких скважин разработаны недостаточно. До настоящего времени вопрос о возможности увеличения предельных безводных дебитов скважин, вскрывающих газоносные пласты с подошвенной водой, способом создания искусственного экрана, изучен также недостаточно полно. Здесь приводится аналитическое решение указанной задачи и рассмотрен случай, когда несовершенная скважина вскрыла однородно-анизотропный круговой пласт с подошвенной водой и эксплуатируется при наличии непроницаемого экрана. Разработана приближенная методика расчета предельных безводных дебитов вертикальных газовых скважин при нелинейном законе фильтрации, обусловленных наличием непроницаемого забойного экрана. Установлено, что величина предельного безводного дебита зависит не только от размеров экрана, но и от его положения по вертикали газонасыщенного пласта; определено оптимальное положение экрана, характеризующее наибольшим предельным дебитом. Произведены практические расчеты на конкретных примерах.

методика расчета

безводный дебит

вертикальная скважина

газовая скважина

1. Карпов В.П., Шерстняков В.Ф. Характер фазовых проницаемостей по промысловым данным. НТС по добыче нефти. – М.: ГТТИ. – №18. – С. 36-42.

2. Телков А.П. Подземная гидрогазодинамика. – Уфа, 1974. – 224 с.

3. Телков А.П., Грачёв С.И. и др. Особенности разработки нефтегазовых месторождений (Часть II). – Тюмень: из-во ОООНИПИКБС-Т, 2001.– 482 с.

4. Телков А.П., Стклянин Ю.И. Образование конусов воды при добычи нефти и газа. – М.: Недра, 1965.

5. Стклянин Ю.И., Телков А.П. Приток к горизонтальной дрене и несовершенной скважине в полосообразном анизотропном пласте. Расчет предельных безводных дебитов. ПМТФ АН СССР. – № 1. – 1962.

В данной статье приводится аналитическое решение указанной задачи и рассмотрен случай, когда несовершенная скважина вскрыла однородно-анизотропный круговой пласт с подошвенной водой и эксплуатируется при наличии непроницаемого экрана (рисунок 1). Считаем, что газ реальный, движение газа, установившееся и подчиняется нелинейному закону фильтрации.

Рис.1. Трехзонная схема притока газа к несовершенной скважине с экраном

Исходя из принятых условий, уравнения притока газа к скважине в зонах I, II, III соответственно примут вид:

; ; (2)

; ; , (3)

где a и b определяются по формулам. Остальные обозначения показаны на схеме (см. рисунок 1). Уравнения (2) и (3) в данном случае описывают приток к укрупненным скважинам соответственно с радиусами rэ и (rэ+ho).

Условие устойчивости на границе раздела газ-вода (см. линию СD) по закону Паскаля запишется уравнением

где ρв - плотность воды, - капиллярное давление как функция насыщенности водой на границе раздела газ-вода.

Решая совместно (1)-(3), после ряда преобразований, получаем уравнение притока

Из совместного решения (2) и (4) получаем квадратное уравнение относительно безразмерного предельного дебита , один из корней которого с учетом (7) и после ряда преобразований представляется выражением:

где (7)

(8)

Переход к размерному предельному безводному дебиту осуществляется по формулам:

(9)

где - средневзвешенное давление в газовой залежи.

Таблица 1

Значения фильтрационных сопротивлений, обусловленных экраном на забое

Добавочные фильтрационные сопротивления и , обусловленные экраном, рассчитаны на ЭВМ по формулам (6), затабулированы (таблица 1) и представлены графиками (рисунок 2). Функция (6) рассчитана на ЭВМ и представлена графически при (рисунок 3). Предельная депрессия может быть установлена по уравнению притока (4.4.4) при Q=Qпр.

Рис.2. Фильтрационные сопротивления и , обусловленные экраном при устойчивой границе раздела газ-вода

Рис.3. Зависимость безразмерного предельного дебита qпр от относительного вскрытия при параметрах , ρ=1/æ* и α

На рисунке 3 приведены зависимости безразмерного предельного дебита q от степени вскрытия при параметрах Rэ и α. Кривые показывают, что с увеличением размера экрана (<20) безводные дебиты увеличиваются. Максимум на кривых соответствует оптимальному вскрытию пласта, при котором можно получить наибольший предельный безводный дебит для заданного размера экрана. С увеличением параметра ρ=1/æ* (уменьшением анизотропии) предельный безводный дебит увеличивается, а уменьшение безводного дебита для малых вскрытий объясняется увеличением фильтрационных сопротивлений, обусловленных экраном на забое.

Пример. Дренируется газовая шапка, контактирующая с подошвенной водой. Требуется определить: предельный дебит газовой скважины, ограничивающий прорыв ГВК к забою и предельный дебит при наличии непроницаемого экрана.

Исходные данные: Рпл=26,7 МПа; К=35,1·10-3 мкм2; Ro=300 м; ho=7,2 м; =0,3; =978 кг/м3; =210 кг/м3 (в пластовых условиях); æ*=6,88; =0,02265 МПа·с (в пластовых условиях); Тпл=346 К; Тст=293 К; Рат=0,1013 МПа; rэ=ho=7,2 м и rэ=0,5ho=3,6 м.

Определяем параметр размещения

Из графиков находим безразмерный предельный безводный дебит жидкости q(ρо,)q(6,1;0,3)=0,15.

По формуле (9) подсчитываем:

Qo=52,016 тыс. м3/сут; тыс. м3/сут.

Определяем безразмерные параметры при наличии экрана:

По графикам (см. рисунок 2) или таблице находим добавочные фильтрационные сопротивления: С1= С1(0,15;0,3;1)=0,6; С2= С2(0,15;0,3;1)=3,0.

По формуле (7) находим безразмерный параметр α=394,75.

По формуле (9) подсчитываем дебит, который составил Qo47,9 тыс.м3/сут.

Расчеты по формулам (7) и (8) дают: Х=51,489 и Y=5,773·10-2.

Безразмерный предельный дебит, рассчитанный по формуле (6), равен q=1,465.

Определяем размерный предельный дебит, обусловленный экраном, из соотношения Qпр=qQo=1,465·47,970,188 тыс.м3/сут.

Расчетный предельный дебит без экрана с аналогичными исходными параметрами составляет 7,8 тыс. м3/сут. Таким образом, в рассматриваемом случае наличие экрана увеличивает предельный дебит почти в 10 раз.

Если принять rэ=3,6 м; т.е. в два раза меньше размеру, чем газонасыщенная толщина, тогда получаем следующие расчетные параметры:

2; С1=1,30; С2=5,20; Х=52,45; Y=1,703·10-2; q=0,445 и Qпр=21,3 тыс.м3/сут. В данном случае предельный дебит увеличивается всего лишь в 2,73 раза.

Следует отметить, что величина предельного дебита зависит не только от размеров экрана, но и от его положения по вертикали газонасыщенного пласта, т.е. от относительного вскрытия пласта , если экран располагается непосредственно перед забоем. Исследование решения (6) показало, что существует оптимальное положение экрана, зависящее от параметров ρ, α, Rэ, которое соответствует наибольшему предельному дебиту. В рассмотренной задаче оптимальным вскрытием является =0,6.

Принимаем ρ=0,145 и =1. По изложенной методике получаем расчетные параметры: С1=0,1; С2=0,5; X=24,672; Y=0,478.

Определяем безразмерный дебит:

q=24,672(-1) 5,323.

Размерный предельный дебит находится по формуле (9)

Qпр=qQo=5,323·103=254,94 тыс.м3/сут.

Таким образом, дебит по сравнению с относительным вскрытием =0,3 увеличился в 3,6 раза.

Изложенный здесь способ определения предельного безводного дебита является приближенным, так как он рассматривает устойчивость конуса, вершина которого уже достигла радиуса экрана rэ.

При из приведенных решений получим формулы для определения q() для несовершенной газовой скважины в условиях нелинейного закона фильтрации с учетом добавочных фильтрационных сопротивлений. Эти формулы также будут приближенными, и по ним рассчитывается завышенное значение предельного безводного дебита.

Для построения двухчленного уравнения притока газа в условиях предельно-устойчивого конуса подошвенной воды необходимо знать фильтрационные сопротивления именно в этих условиях. Определить их можно исходя из теории устойчивого конусообразования Маскета-Чарного. Уравнение линии тока, ограничивающей область пространственного движения к несовершенной скважине в однородно-анизотропном пласте, когда уже произошел прорыв вершины конуса к забою скважины, в соответствии с теорией безнапорного движения, запишем в виде

(10)

где q= - безразмерный предельный безводный дебит, определяемый по приведенным (известным) приближенным формулам и графикам; - безразмерный параметр.

Выражая скорость фильтрации через расход , подставляя уравнение границы раздела (10) в дифференциальное уравнение (1), учитывая закон газового состояния и интегрируя по давлению Р и радиусу r в соответствующих пределах, получим уравнение притока вида (12) и формулы (13), в которых следует принять:

; , (11)

(12)

где Li(x) - интегральный логарифм, который связан с интегральной функцией зависимостью .

(13)

При x>1 интеграл (13) расходится в точке t=1. В этом случае под Li(x) надо понимать значение несобственного интеграла. Поскольку методы определения безразмерных предельных безводных дебитов хорошо известны, то, очевидно, нет необходимости табулировать функции (11) и (12).

1. Разработана приближенная методика расчета предельных безводных дебитов вертикальных газовых скважин при нелинейном законе фильтрации, обусловленных наличием непроницаемого забойного экрана. Безразмерные предельные дебиты и соответствующие добавочные фильтрационные сопротивления рассчитаны на компьютере, результаты затабулированы и приведены соответствующие графические зависимости.

2. Установлено, что величина предельного безводного дебита зависит не только от размеров экрана, но и от его положения по вертикали газонасыщенного пласта; определено оптимальное положение экрана, характеризующее наибольшим предельным дебитом.

3. Произведены практические расчеты на конкретном примере.

Рецензенты:

Грачев С.И., д.т.н., профессор, заведующий кафедрой «Разработка и эксплуатация нефтяных и газовых месторождений», Институт геологии и нефтегазодобычи, ФГБОУ ТюмГНГУ, г. Тюмень;

Сохошко С.К., д.т.н., профессор, профессор кафедры «Разработка и эксплуатация нефтяных и газовых месторождений», Институт геологии и нефтегазодобычи, ФГБОУ ТюмГНГУ, г. Тюмень.

Библиографическая ссылка

Каширина К.О., Забоева М.И., Телков А.П. МЕТОДИКА РАСЧЕТА ПРЕДЕЛЬНЫХ БЕЗВОДНЫХ ДЕБИТОВ ВЕРТИКАЛЬНЫХ ГАЗОВЫХ СКВАЖИН ПРИ НЕЛИНЕЙНОМ ЗАКОНЕ ФИЛЬТРАЦИИ И НАЛИЧИИ ЭКРАНА // Современные проблемы науки и образования. – 2015. – № 2-2.;
URL: http://science-education.ru/ru/article/view?id=22002 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Владимир Хомутко

Время на чтение: 4 минуты

А А

Способы расчёта дебита нефти

При определении продуктивности определяют её дебит, который является очень важным показателем при расчете планируемой продуктивности.

Важность этого показателя трудно переоценить, поскольку с его помощью определяют – окупит полученное с конкретного участка сырье стоимость его разработки или нет.

Формул и методик расчета этого показателя несколько. Многие предприятия пользуются формулой французского инженера Дюпюи ( Дюпуи), который много лет посвятил изучению принципов движения грунтовых вод. С помощью расчета по этой методике достаточно просто определить, целесообразно ли разрабатывать тот или иной участок месторождения с экономической точки зрения.

Дебитом в данном случае называется объем жидкости, который поставляет скважина за определенный промежуток времени.

Стоит сказать, что достаточно часто добытчики пренебрегают расчетом этого показателя при установке добывающего оборудования, однако это может привести к весьма печальным последствиям. Рассчитываемая величина, которая определяет количество добываемой нефти, имеет несколько методик определения, о которых мы поговорим далее.

Зачастую этот показатель по-другому называют «производительность насоса», однако это определение не совсем точно характеризует получаемую величину, поскольку свойства насоса обладают собственными погрешностями. В связи с этим определяемый расчетным путем объем жидкостей и газов в некоторых случаях сильно разнится с заявленным.

Вообще значение этого показателя рассчитывается для того, чтобы выбрать насосное оборудование. Заранее определив с помощью расчета производительность определенного участка, можно уже на этапе планирования разработки исключить не подходящие по своим параметрам насосы.

Расчет этого значения необходим любому добывающему предприятию, поскольку нефтеносные участки с низкой производительностью просто могут оказаться нерентабельными, и разработка их будет убыточной. Кроме того, неверно выбранное насосное оборудование из-за вовремя не сделанных расчетов может привести к тому, что предприятие вместо планируемой прибыли получит существенные убытки.

Еще одним важным фактором, свидетельствующим об обязательности такого расчета для каждой конкретной скважины, является тот факт, что даже дебиты расположенных поблизости уже работающих скважин могут существенно отличаться от дебита новой.

Чаще всего такая существенная разница объясняется конкретными значениями подставляемых в формулы величин. Например, проницаемость пласта может иметь существенные различия в зависимости от глубины залегания продуктивного слоя, а чем ниже проницаемость пласта, тем меньше производительность участка и, разумеется, ниже его рентабельность.

Расчет дебита не только помогает при выборе насосного оборудования, но позволяет определить оптимальное место бурения колодца.

Установка новой добывающей вышки является рискованным делом, поскольку даже самые квалифицированные специалисты в области геологии до конца не знают всех тайн земли.

В настоящее время существует множество разновидностей профессионального оборудования для нефтедобычи, но для того, чтобы сделать правильный выбор, необходимо сначала определить все необходимые буровые параметры. Правильный расчет таких параметров позволит подобрать оптимальный рабочий комплект, который будет наиболее эффективен для участка с конкретной производительностью.

Способы расчета этого показателя

Как мы сказали ранее, методов для расчета этого показателя существует несколько.

Чаще всего используют две методики – стандартную, и с применением упомянутой нами выше формулы Дюпюи.

Стоит сразу сказать, что второй способ хотя и сложнее, но дает более точный результат, поскольку французский инженер всю свою жизнь посвятил изучению этой сферы, в результате чего в его формуле используется гораздо больше параметров, чем в стандартной методике. Однако, мы рассмотрим оба способа.

Стандартный расчет

Эта методика основана на следующей формуле:

D = H x V / (Hд – Hст), где

D – это значение дебита скважины;

Н – это высота водного столба;

V – производительность насоса;

Нд – динамический уровень;

Нст – статический уровень.

За показатель статического уровня в данном случае берется расстояние от начального уровня подземных вод до начальных почвенных слоев, а в качестве динамического уровня используется абсолютная величина, которую определяют с помощью замера уровня воды после её откачивания, используя измерительный инструментарий.

Существует понятие оптимального показателя дебита нефтеносного участка месторождения. Его определяют как для определения общего уровня депрессии конкретной скважины, так и для всего продуктивного пласта целиком.

Формула расчета среднего уровня депрессии подразумевает значение забойного давления Рзаб = 0. Дебит конкретной скважины, который был рассчитан для оптимального показателя депрессии, и является оптимальным значением этого показателя.

Механическое и физическое давление на пласт может привести к обрушению некоторых частей внутренних стенок ствола. Вследствие этого, потенциальный дебит нередко приходится уменьшать механическим способом, чтобы не нарушать бесперебойность добычи и сохранить прочность и целостность стенок ствола.

Как видите, стандартная формула является простейшей, в результате чего результат она дает с достаточно существенной погрешностью. Чтобы получить более точный и объективный результат, целесообразно использовать пусть и более сложную, но гораздо более точную формулу Дюпюи, учитывающую большее количество важных параметров конкретного участка.

Расчет по Дюпюи

Стоит сказать, что Дюпюи был не только квалифицированным инженером, но и прекрасным теоретиком.

Он вывел даже не одну, а две формулы, первая из которых применяется для определения потенциальной гидропроводности и продуктивности для насосного оборудования и нефтеносного пласта, в вторая позволяет проводить расчет для не идеальных насоса и месторождения, основываясь на показателях их фактической продуктивности.

Итак, разберем первую формулу Дюпюи:

N0 = kh / ub * 2∏ / ln(Rk/rc), где

N0 – это показатель потенциальной продуктивности;

Kh/u – коэффициент гидропроводности нефтеносного пласта;

b – коэффициент, учитывающий расширение по объему;

∏ – это число Пи = 3,14;

Rk – это значение радиуса контурного питания;

Rc – значение долотного радиуса, измеренного по всему расстоянию до вскрытого продуктивного пласта.

Вторая формула Дюпюи:

N = kh/ub * 2∏ / (ln(Rk/rc)+S, где

N – это показатель фактической продуктивности;

S – так называемый скин-фактор, который определяет фильтрационное сопротивление течению.

Остальные параметры расшифровываются так же, как и в первой формуле.

Вторая формула Дюпюи для определения фактической продуктивности конкретного нефтеносного участка в настоящее время используется практически всеми добывающими компаниями.

Стоит сказать, что для повышения производительности месторождения в некоторых случаях используют технологию гидравлического разрыва продуктивного пласта, суть которой – механическое образование в нем трещин.

Периодически возможно проведение так называемой механической регулировки дебита нефти в скважине. Она проводится с помощью повышения забойного давления, которое приводит к снижению уровня добычи и показывает фактические возможности каждого нефтеносного участка месторождения.

Кроме того, чтобы повысить дебит, применяют и термокислотную обработку.

При помощи различных растворов, содержащих в себе кислотные жидкости, производят очистку породы от образовавшихся в процессе бурения и эксплуатации отложений смол, солей и прочих химических веществ, которые мешают качественной и эффективной разработке продуктивного пласта.

Сначала кислотную жидкость заливают в ствол до тех пор, пока она не заполнит площадь перед разрабатываемым пластом. Затем закрывают задвижку, и под давлением этот раствор проходит дальше вглубь. Остатки этого раствора вымывают либо нефтью, либо водой после возобновления добычи углеводородного сырья.

Стоит сказать, что естественное снижение производительности нефтяных месторождений находится на уровне от 10 до 20 процентов в год, если считать от первоначальных значений этого показателя, полученных на момент запуска добычи. Описанные выше технологии позволяют увеличить интенсивность нефтедобычи на месторождении.

Дебит необходимо рассчитывать через определенные периоды времени. Это помогает при формировании стратегии развития любой современной нефтедобывающей компании, которая поставляет сырье предприятиям, производящим различные нефтепродукты.