ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

О применении современных инженерных решений при компенсации температурных деформаций трубопроводов тепловых сетей. Оборудование тепловых сетей. Трубы и их соединение. Опоры. Компенсация температурных деформаций

12.1. Одно из условий сохранения прочности и надежной работы трубопроводов - полная компенсация температурных деформаций.

Температурные деформации компенсируют за счет поворотов и изгибов трассы трубопроводов. При невозможности ограничиться самокомпенсацией (например, на совершенно прямых участках значительной протяженности) на трубопроводах устанавливают П-образные, линзовые или волнистые компенсаторы.

12.2. Не допускается применять сальниковые компенсаторы на технологических трубопроводах, транспортирующих среды групп А и Б.

12.3. При расчете самокомпенсации трубопроводов и конструктивных размеров специальных компенсирующих устройств можно рекомендовать следующую литературу:

Справочник проектировщика. Проектирование тепловых сетей. М.: Стройиздат, 1965. 396 с.

Справочник по проектированию электрических станций и сетей. Раздел IX. Механические расчеты трубопроводов. М.: Теплоэлектропроект, 1972. 56 с.

Компенсаторы волнистые, их расчет и применение. М.: ВНИИОЭНГ, 1965. 32 с.

Руководящие указания по проектированию стационарных трубопроводов. Вып. II. Расчеты трубопроводов на прочность с учетом напряжений компенсации, № 27477-Т. Всесоюзный государственный проектный институт «Теплопроект», Ленинградское отделение, 1965. 116 с.

12.4. Тепловое удлинение участка трубопровода определяют по формуле:

где l - тепловое удлинение участка трубопровода, мм; - средний коэффициент линейного расширения, принимаемый по табл. 18 в зависимости от температуры; l - длина участка трубопровода, м; t м - максимальная температура среды, °С; t н - расчетная температура наружного воздуха наиболее холодной пятидневки, °С; (для трубопроводов с отрицательной температурой среды t н - максимальная температура окружающего воздуха, °С; t м - минимальная температура среды, °С).

12.5. П-образные компенсаторы можно применять для технологических трубопроводов всех категорий. Их изготовляют либо гнутыми из цельных труб, либо с использованием гнутых, крутоизогнутых или сварных отводов; наружный диаметр, марку стали труб и отводов принимают такими же, как и для прямых участков трубопровода.

12.6. Для П-образных компенсаторов гнутые отводы следует применять только из бесшовных, а сварные - из бесшовных и сварных труб. Сварные отводы для изготовления П-образных компенсаторов допускаются в соответствии с указаниями п. 10.12 .

12.7. Применять водогазопроводные трубы по ГОСТ 3262- 75 для изготовления П-образных компенсаторов не разрешается, а электросварные со спиральным швом, указанные в табл. 5 , рекомендуются только для прямых участков компенсаторов.

12.8. П-образные компенсаторы должны быть установлены горизонтально с соблюдением необходимого общего уклона. В виде исключения (при ограниченной площади) их можно размещать вертикально петлей вверх или вниз с соответствующим дренажным устройством в низшей точке и воздушниками.

12.9. П-образные компенсаторы перед монтажом должны быть установлены на трубопроводах вместе с распорными приспособлениями, которые удаляют после закрепления трубопроводов на неподвижных опорах.

12.10. Линзовые компенсаторы, осевые, изготовляемые по ОСТ 34-42-309-76 - ОСТ 34-42-312-76 и ОСТ 34-42-325-77 - ОСТ 34-42-328-77, а также линзовые компенсаторы шарнирные, изготовляемые по ОСТ 34-42-313-76 - ОСТ 34-42-316-76 и ОСТ 34-42-329-77 - ОСТ 34-42-332-77 применяют для технологических трубопроводов, транспортирующих неагрессивные и малоагрессивные среды при давлении Р у до 1,6 МПа (16 кгс/см 2), температуре до 350 °С и гарантированном числе повторяющихся циклов не более 3000. Компенсирующая способность линзовых компенсаторов приведена в табл. 19 .

12.11. При установке линзовых компенсаторов на горизонтальных газопроводах с конденсирующимися газами для каждой линзы должен быть предусмотрен дренаж конденсата. Патрубок для дренажной трубы изготовляют из бесшовной трубы по ГОСТ 8732-78 или ГОСТ 8734-75 . При установке линзовых компенсаторов с внутренним стаканом на горизонтальных трубопроводах с каждой стороны компенсатора должны быть предусмотрены направляющие опоры.

12.12. Для увеличения компенсирующей способности компенсаторов допускается их предварительная растяжка (сжатие). Значение предварительной растяжки указывают в проекте, а при отсутствии данных ее можно принимать равной не более 50 %-ной компенсирующей способности компенсаторов.

12.13. Поскольку температура окружающего воздуха в период монтажа чаще всего превышает наименьшую температуру трубопровода, предварительную растяжку компенсаторов необходимо уменьшить на  попр , мм, которую определяют по формуле:

Где - коэффициент линейного расширения трубопровода, принимаемый по табл. 18 ; L 0 - длина участка трубопровода, м; t монт - температура при монтаже, °С; t min - минимальная температура при эксплуатации трубопровода, °С.

12.14. Пределы применения линзовых компенсаторов по рабочему давлению в зависимости от температуры транспортируемой среды устанавливают по ГОСТ 356-80 ; пределы применения их по цикличности приведены ниже:


Общее число циклов работы компенсатора за период эксплуатации

Компенсирующая способность линзы при толщине стенки, мм

2,5

3,0

4,0

300

5,0

4,0

3,0

500

4,0

3,5

2,5

1000

4,0

3,5

2,5

2000

2,8

2,5

2,0

3000

2,8

2,2

1,6

12.15. При установке шарнирных компенсаторов ось шарниров должна быть перпендикулярна плоскости изгиба трубопровода.

При сварке узлов шарнирного компенсатора предельные отклонения от соосности не должны превышать для условного прохода: до 500 мм - 2 мм; от 500 до 1400 мм - 3 мм; от 1400 до 2200 мм - 4 мм.

Несимметричность осей шарниров относительно вертикальной плоскости симметрии (вдоль оси трубопровода) должна быть для условного прохода не более: до 500 мм - 2 мм; от 500 до 1400 мм - 3 мм; от 1400 до 2200 мм - 5 мм.

12.16. Качество линзовых компенсаторов, подлежащих установке на технологических трубопроводах, должно подтверждаться паспортами или сертификатами.

12.17. Сильфонные осевые компенсаторы КО, угловые КУ, сдвиговые КС и универсальные КМ в соответствии с ОСТ 26-02-2079-83 применяют для технологических трубопроводов с условным проходом D y от 150 до 400 мм при давлении от остаточного 0,00067 МПа (5 мм рт. ст.) до условного Р у 6,3 МПа (63 кгс/см 2), при рабочей температуре от - 70 до + 700 °С.

12.18. Выбор типа сильфонного компенсатора, схема его установки и условия его применения должны быть согласованы с автором проекта или с ВНИИнефтемашем.

Варианты материального исполнения сильфонных компенсаторов приведены в табл. 20 , а их техническая характеристика - в табл. 21 - 30 .

12.19. Сильфонные компенсаторы необходимо монтировать в соответствии с инструкцией по монтажу и эксплуатации, входящей в комплект поставки компенсаторов.

12.20. В соответствии с ОСТ 26-02-2079-83 средний срок службы сильфонных компенсаторов до списания - 10 лет, средний ресурс до списания - 1000 циклов для компенсаторов КО-2 и КС-2 и 2000 - для компенсаторов остальных типов.

Средний ресурс до списания компенсаторов КС-1 при вибрации с амплитудой колебаний 0,2 мм и частоте, не превышающей 50 Гц, - 10000 ч.

Примечание. Под циклом работы компенсатора понимают «пуск - остановку» трубопровода для ремонта, освидетельствования, реконструкции и т. п., а также каждое колебание температурного режима работы трубопровода, превышающее 30 °С.

12.21. При ремонтных работах на участках трубопроводов с компенсаторами необходимо исключить: нагрузки, приводящие к скручиванию компенсаторов, попадание искр и брызг на сильфоны компенсаторов при сварочных работах, механические повреждения сильфонов.

12.22. При наработке 500 циклов для компенсаторов КО-2 и КС-2 и 1000 циклов для сильфонных компенсаторов остальных типов необходимо:

при эксплуатации на пожаро-взрывоопасных и токсичных средах заменить их новыми;

при эксплуатации на других средах техническому надзору предприятия принять решение о возможности их дальнейшей эксплуатации.

12.23. При установке компенсатора в паспорт трубопровода вносят следующие данные:

техническую характеристику, завод-изготовитель и год изготовления компенсатора;

расстояние между неподвижными опорами, необходимую компенсацию, предварительное растяжение;

температуру окружающего воздуха при монтаже компенсатора и дату.

Существует ряд вариантов температурных удлинений компенсации в теплосетях. Компенсаторы гибкие производят из труб, имеют они чаще всего Г- или П-образную форму. Обычно, компенсаторы гибкие вне зависимости от способа теплопроводной прокладки укладывают в каналах сечения непроходного (нишах), что повторяют в плане форменный вид компенсатора.

В теплосетях подземных, главным образом на трубопроводах диаметра большого, чаще всего потребляются компенсаторы осевые типа скользящего (компенсаторы сальниковые). В областях установки компенсаторы сальниковые имеют свойство секционирования трубопроводов на участки, что не связаны металлически между собой. В данном случае при присутствии разности потенциалов между стаканом компенсатора и корпусом цепь электрическая замкнётся по воде, что может обусловить протекание процесса электрохимического, на внутренних поверхностях компенсатора сальникового коррозионных процессов. Но как показывает практика, во нередких случаях возникает связи металлическая между двумя частями компенсатора, вследствие контакта стакана с грундбуксом. В процессе использования компенсатора сальникового контакт металлический между частями его отдельным может иногда возникать и прерываться.

Компенсаторы сальниковые, арматуру запорную как и иное оборудование, что требует обслуживание, помещают в камеры что расположены друг от друга на не более 150-200 метров расстояния. Выполняются камеры из кладки кирпичной, бетона монолитного или железобетона. Из-за ощутимых оборудования габаритов обычно камеры имеют немаленькие размеры. Из-за того, что между ограждающими конструкциями и температурами оборудования резкое различие возникает в камерах постоянная конвекция воздуха влажного и как в результате этого конденсат на поверхностях, которые имеют температуру ниже точки росы.

В итоге, происходит в отдельных участках сосредоточенное увлажнение тепловой изоляции труб в камере и участках, что примыкают к ней, канала, капелью с перекрытий со стен, осуществляется через которые ввод в камеры труб, с помощью плёнки влаги, что стекает с щитовых плоскостей опор, что размещены в камерах. Ввод в камеры труб производится через окна специальные в стенках камер. Структура узла ввода имеет значение важное, главным образом для тепловых проводов прокладки бесканальной в связи с наличием возможности трубной просадки и в итоге этого деформации конструкции изоляции. Структурой ввода труб узла в камеры, обусловлена кроме того и уровень защищённости тепловой изоляции от аэрации и увлажнения на данном участке.

Для того, чтобы обеспечить компенсацию удлинений температурных на довольно коротких участках точки отдельные тепловых проводов фиксируют опорами неподвижными, а иная часть тепловых проводов перемещается свободно по отношению к этим опорам. Данным образом опоры неподвижные теплопровод делят на независимые по отношению к температурным удлинениям участки. Опоры при этом воспринимают усилия, что возникают в трубопроводах, при разновидных способах и схемах компенсации удлинений температурных. Установку опор неподвижных предусматривают при различных способах теплопроводной прокладки.

Участки установки опор неподвижных совмещают как обычно с узлами трубных ответвлений, точками расположения запорной аппаратуры на трубопроводах, компенсаторов сальниковых, грязевиков и иного оборудования. Расстояние между опорами неподвижными зависит основным образом от трубопроводного диаметра, температуры теплового носителя, и способности компенсации компенсаторов установленных. При температуре воды максимальной, что равна 150 градусам, для трубопроводов диаметром от 50-ти до 1000 миллиметров между опорами расстояния могут быть от 60 до 200 метров.

В виде несущей структуры в опорах неподвижных могут потребляться швеллеры стальные, балки железобетонные (опоры лобовые) или щиты железобетонные щиты (опоры щитовые). Опоры лобовые устанавливают обычно в камерах, опоры щитовые в данный момент более широко потребляемые, устанавливают в каналах и камерах. На участке трубного прохода через опору щитовую предполагается зазор. Трубы на данных участках иметь должны покрытие защитное, как и на иных трубных частях. Зазор промеж опор и труб быть должен, заполнен набивкой эластичной, которая предотвращает попадание влаги в зазор. В случае потребления набивок поглощающих влагу, как практика показала, на данном участке может произойти образование опасного очага коррозионных процессов. Опоры щитовые в нижней части своей иметь должны отверстия для пропускания воды и предотвращения грунтом заноса каналов.

Конструкции несущие опор неподвижных имеют контакты непосредственные с грунтом или через конструкцию ограждающие камер и каналов. Потому при отсутствии прокладок диэлектрических промеж упор (опоры лобовые) или кольцами опорными, (опоры щитовые) и конструкцией несущей опора неподвижная является заземлением теплопровода сосредоточенным, то есть элементов, что обуславливает вариант попадания токов блуждающих в теплосеть, а в вариантах потребления защиты электрохимической – элементом, что снижает эффективность её.

Cтраница 1


Компенсация тепловых удлинений трубопроводов осуществляется либо установкой компенсаторов, либо изгибами трубопровода, специально предусматриваемыми при его трассировке. Для правильной работы компенсаторов необходимо четко фиксировать участок, удлинение которого он должен воспринимать, и обеспечить свободное перемещение трубопровода на этом участке. Для этого опоры трубопровода выполняют неподвижными и подвижными. Компенсатор должен воспринимать удлинение между двумя неподвижными опорами. Подвижные опоры позволяют трубопроводу свободно перемещаться в определенном направлении.  

Компенсация тепловых удлинений трубопровода может осуществляться как за счет самокомпенсации, так и путем установки компенсаторов.  

Компенсация тепловых удлинений трубопроводов производится одним из двух способов: 1) устройством трубопроводов с самокомпенсацией; 2) установкой компенсаторов различных типов.  

Компенсация тепловых удлинений трубопроводов осуществляется либо установкой компенсаторов, либо изгибами трубопровода, специально предусматриваемыми при его трассировке.  

Компенсация тепловых удлинений трубопровода обеспечивается специальными устройствами. Для паропроводов низкого давления (до 0 5 МПа) применяют сальниковые или линзовые компенсаторы. Число волн в линзовом компенсаторе не должно превышать 12 во избежание продольного изгиба. В большинстве случаев для теплопроводов применяют гнутые компенсаторы, имеющие П - образную, лирообразную и другие формы. Их изготовляют на месте монтажа из тех же труб, что и трубопровод. Наибольшее распространение получил П - образный компенсатор.  

Компенсация тепловых удлинений трубопроводов производится одним.  

Защитный кожух - [ IMAGE ] Схема самокомпенсирующегося трубопровода.  

Компенсация тепловых удлинений трубопроводов достигается устройством трубопроводов с самокомпенсацией или установкой компенсаторов различных типов.  

Компенсация тепловых удлинений трубопроводов осуществляется либо установкой компенсаторов, либо изгибами трубопровода, специально предусматриваемыми при его трассировке. Для правильной работы компенсаторов необходимо ограничить участок, удлинение которого он должен воспринимать, а также обеспечить свободное перемещение трубопровода на этом участке. Для этого опоры трубопровода выполняют неподвижными (мертвые точки) и подвижными. Неподвижные опоры фиксируют трубопровод в определенном положении и воспринимают усилия, появляющиеся в трубе даже при наличии компенсатора.  

Компенсацию теплового удлинения трубопровода предусматривают за счет углов поворотов трубопровода или применения П - образных компенсаторов.  

Размещение подвесных излучающих нотолочных (1 я настенных (2 панелей в помещении.| Зависимость расстояния от крайних подвесных излучающих панелей до стен / 3 от высоты их подвески Л. н.  

Устройство содержит изогнутой формы корпус из отводов и прямых участков, выполненный из эластичного материала, преимущественно из резинотканевого рукава (шланга), а на концах корпуса установлены патрубки или патрубки с фланцами для соединения с трубопроводами тепловой сети, а материал эластичного корпуса армирован металлической сеткой.

Изобретение относится к системам централизованного теплоснабжения населенных мест, промышленных предприятий и котельных.

В централизованных системах теплоснабжения один источник теплоты (котельная) подает теплоту нескольким потребителям, расположенным на некотором расстоянии от источника теплоты, а передача теплоты от источника до потребителей осуществляется по специальным теплопроводам - тепловым сетям.

Тепловая сеть состоит из соединенных между собой сваркой стальных трубопроводов, тепловой изоляции, устройств для компенсации температурных удлинений, запорной и регулирующей арматуры, подвижных и неподвижных опор и др. , с.253 или , с.17.

При движении теплоносителя (вода, пар и др.) по трубопроводам последние нагреваются и удлиняются. Например, при повышении температуры на 100 градусов удлинение стальных трубопроводов составляет 1,2 мм на один метр длины.

Компенсаторы используются для восприятия деформаций трубопроводов при изменении температуры теплоносителя и для разгрузки их от возникающих температурных напряжений, а также для предохранения от разрушения арматуры, установленной на трубопроводах.

Трубопроводы тепловых сетей устраивают таким образом, чтобы они могли свободно удлиняться при нагревании и укорачиваться при охлаждении без перенапряжения материала и соединений трубопровода.

Известны устройства для компенсации температурных удлинений , которые выполнены из тех же труб, что и стояки горячего водоснабжения. Указанные компенсаторы выполнены из труб, изогнутых в виде полуволн. Такие устройства имеют ограниченное применение, так как компенсирующая способность полуволн небольшая, во много раз меньше, чем у П-образных компенсаторов. Поэтому такие устройства не применяются в системах теплоснабжения.

Известны наиболее близкие по совокупности признаков устройства для компенсации температурных удлинений тепловых сетей с 189, или стр.34. Известные компенсаторы можно разделить на две группы : гибкие радиальные (П-образные) и осевые (сальниковые). Чаще применяют П-образные компенсаторы, так как они не нуждаются в обслуживании, но требуется их растяжка. К недостаткам П-образных компенсаторов можно отнести: повышенное гидравлическое сопротивление участков тепловых сетей, увеличение расхода трубопроводов, необходимость устройства ниш, а это приводит к увеличению капитальных затрат. Сальниковые компенсаторы требуют постоянного обслуживания, поэтому их можно устанавливать только в тепловых камерах, а это приводит к удорожанию строительства. Для компенсации температурных удлинений используют и повороты тепловых сетей (Г- и Z - образная компенсация, рис.10.10 и 10.11, с 183 ).

Недостатками таких компенсирующих устройств являются усложнение монтажа при наличии П-образных компенсаторов и усложнение эксплуатации при использовании сальниковых компенсаторов, а также небольшой срок службы стальных трубопроводов из-за коррозии последних. Кроме того, при температурных удлинениях трубопроводов возникают силы упругой деформации, изгибающие моменты гибких компенсаторов, в том числе поворотов тепловых сетей. Вот почему при устройстве тепловых сетей используют стальные, как наиболее прочные трубопроводы и требуется проводить расчет на прочность , с.169. Заметим, что стальные трубопроводы тепловых сетей подвержены интенсивной коррозии, как внутренней, так и наружной. Поэтому срок службы тепловых сетей, как правило, не превышает 6-8 лет.

П-образные компенсаторы состоят из 4-х отводов и трех прямых участков стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «П».

Самокомпенсация трубопроводов осуществляется по Z-образной схеме и Г-образной схеме , рис.10.10. и рис.10.11, с.183.

Z-образная схема включает два отвода и три прямых участка стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «Z».

Г-образная схема включает один отвод и два прямых участка стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «Г».

Задачей изобретения является увеличение срока службы подающих и обратных трубопроводов тепловых сетей, упрощение монтажа тепловых сетей и создание условий, при которых будут отсутствовать причины, которые приводят к возникновению напряжений в трубопроводах от температурных удлинений трубопроводов.

Поставленная цель достигается тем, что устройство для компенсации температурных удлинений трубопроводов тепловой сети содержащее изогнутой формы корпус, состоящее из отводов и прямых участков трубопровода, отличается от прототипа тем, что изогнутой формы корпус из отводов и прямых участков выполнен из эластичного материала, преимущественно из резинотканевого рукава (или шланга, выполненного, например, из резины), а на концах корпуса установлены патрубки или патрубки с фланцами для соединения с трубопроводами тепловой сети. При этом эластичный материал, из которого выполнен изогнутой формы корпус (шланг) может быть армирован преимущественно металлической сеткой.

Использование предлагаемого устройства приводит к уменьшению расхода трубопроводов, уменьшению размеров ниш для установки компенсаторов, не требуется проводить растяжку компенсаторов, то есть в итоге уменьшаются капитальные затраты. Кроме того, в подающем и обратном трубопроводах тепловых сетей не будут возникать напряжения от температурных удлинений; следовательно, для устройства тепловых сетей могут использоваться трубопроводы, выполненные из менее прочного материала, чем сталь, в том числе могут использоваться трубы, стойкие против коррозии (чугун, стекло, пластик, асбестоцемент и др.), а это приводит к снижению капитальных и эксплуатационных затрат. Выполнение подающих и обратных трубопроводов из материала, стойкого против коррозии (чугун, стекло и др.) повышает долговечность тепловых сетей в 5-10 раз, а это приводит к уменьшению эксплуатационных затрат; действительно, если срок службы трубопроводов увеличивается, значит, заменять трубопроводы тепловых сетей приходится реже, а это значит, что реже придется отрывать траншею, снимать плиты перекрытия каналов для прокладки тепловых сетей, демонтировать трубопроводы, которые отслужили свой срок эксплуатации, укладывать новые трубопроводы, покрывать их новой тепловой изоляцией, укладывать плиты перекрытия на место, засыпать траншею грунтом и выполнять другие работы.

Устройство поворотов тепловых сетей для осуществления «Г» и «Z»-образной компенсации трубопроводов приводит к уменьшению затрат металла и упрощению компенсации температурных удлинений. При этом резинотканевый рукав, используемый для компенсации температурных удлинений, может быть выполнен из резины или шланга; при этом шланг может быть армирован (для прочности) например, стальной проволокой.

В технике широко применяются резинотканевые рукава (шланги). Например, гибкие трубы (виброизолирующие вставки) применяются для предотвращения передачи вибрации от циркуляционного насоса на систему отопления с.107, рис.V9. При помощи шлангов осуществляется присоединение умывальников и моек к трубопроводам горячего и холодного водоснабжения. Однако, в этом случае резинотканевые рукава (шланги) проявляют новые свойства, так как выполняют роль компенсирующих устройств, то есть компенсаторов.

На фиг.1 представлено устройство для компенсации температурных удлинений трубопроводов тепловых сетей, а на фиг.2 разрез 1-1 фиг.1

Устройство состоит из трубопровода 1 длиной L, выполненного из эластичного материала; таким трубопроводом может служить резиновый рукав, гибкая труба, шланг, шланг армированный металлической сеткой, трубопровод, выполненный из резины и т.п. В каждый конец 2 и 3 трубопровода 1 вставлен патрубок 4 и 5, к которым жестко, например, с помощью сварки, присоединены фланцы 6 и 7, в которых имеются отверстия 8 и 9, диаметром равные внутреннему диаметру патрубков 4 и 5. Для обеспечения прочности и герметичности соединения трубопровода 1 и патрубков 4 и 5 установлены хомуты 10 и 11. Каждый хомут стягивается болтом 12 и гайкой 13. Во фланцах 6 и 7 имеются отверстия 14 для болтов 31, фиг.5 которыми фланцы 6 и 7 соединяется с контрфланцами 19 и 20, прикрепленными к трубопроводам 15 и 16 тепловой сети (см. фиг.5 и 6). Контрфланцы на фиг.1 и 2 не показаны. Для обеспечения прочности и герметичности соединения трубопровода 1 и патрубков 4 и 5 вместо хомутов 10 и 11 можно использовать и другое соединение, например, с помощью обжима.

В данном устройстве патрубки 4 и 5 и фланцы 6 и 7 могут быть изготовлены из стали и соединены при помощи, например, сварки. Однако, более целесообразно патрубки 4 и 5 и фланцы 6 и 7 выполнять как единое, неразъемное изделие, например, методом литья или методом литья под давлением из материала, стойкого против коррозии, например, из чугуна. В этом случае долговечность предложенного устройства будет значительно больше.

На фиг.3 и 4 показан другой вариант предложенного устройства. Отличие состоит в том, что к патрубкам 4 и 5 фланцы 6 и 7 не присоединяется, а соединение патрубков 4 и 5 с трубопроводами тепловой сети осуществляется с помощью сварки, то есть предусматривается неразъемное соединение. При наличии фланцев 6 и 7 (см. фиг.1) соединение предлагаемого устройства с трубопроводом тепловой сети осуществляется с помощью разъемного соединения, более удобного при монтаже трубопроводов.

Перед установкой на место устройству для компенсации температурных удлинений трубопроводов тепловых сетей придают форму изогнутого корпуса. Для примера на фиг.5 показана П-образная форма корпуса. Такую форму придают предложенному устройству путем изгиба трубопровода 1, см. фиг.1. Когда необходимо осуществить компенсацию температурных удлинений за счет поворотов, то предложенному устройству придают Г-образную или Z-образную форму. Заметим, что Z-образная форма состоит из двух Г-образных форм.

На фиг.5 показан участок трубопровода 15 длиной L 1 и участок трубопровода 16 длиной L 3 ; указанные участки расположены между неподвижными опорами 17 и 18. Между трубопроводами 15 и 16 расположено предлагаемое устройство для компенсации температурных удлинений длиной L 2 . Расположение всех элементов на фиг.5 показано при отсутствии теплоносителя в трубопроводах 15 и 16 и в предлагаемом устройстве.

К трубопроводу 15 (см. фиг.5) жестко (при помощи сварки) присоединен контрфланец 19, а к трубопроводу 16 аналогичным образом присоединен контрфланец 20.

После установки на место предложенного устройства оно при помощи болтов 32 и гаек, фланцев 6 и 7 и контрфланцев 19 и 20 присоединяется к трубопроводам 15 и 16; между фланцами устанавливают прокладки. На фиг.5 хомуты 10 и 11 и болты 12 условно не показаны.

На фиг.5 показано предлагаемое устройство для компенсации температурных удлинений путем придания трубопроводу 1 (см. фиг.1) П-образной формы, то есть в данном случае предложенное устройство - изогнутой формы корпус - состоит из 4-х отводов и 3-х прямых участков.

Устройство работает следующим образом. Когда в предлагаемое устройство и трубопроводы 15 и 16 подается теплоноситель, например, горячая вода, то трубопроводы 15 и 16 нагреваются и удлиняются (см. фиг.6). Трубопровод 15 удлиняется на величину L 1 ; длина трубопровода 15 будет равна . При удлинении трубопровода 15 он перемещается вправо, и одновременно вправо перемещаются фланцы 19, патрубок 4 и часть трубопровода 1, которые соединены друг с другом (хомуты 10 и 11 на фиг.5 и 6 условно не показаны). В то же самое время трубопровод 16 удлиняется на величину L 3 , длина трубопровода 16 будет равна . При этом фланцы 7 и 20, патрубок 5 и часть трубопровода 1, соединенная с патрубком 5 переместится влево на величину L 3 Расстояние между фланцами 6 и 7 уменьшилось и стало равным . При этом трубопровод 1, соединяющий патрубки 4 и 5 (и трубопроводы 15 и 16) изгибается и за счет этого не препятствует перемещению трубопроводов 15 и 16, следовательно, в трубопроводах 15 и 16 не возникает напряжения от удлинения трубопроводов.

Очевидно, что длина трубопровода 1 должна быть больше расстояния L 2 между фланцами 6 и 7, чтобы иметь возможность изгибаться. При этом никаких напряжений в трубопроводах 1, 15 и 16 от температурных удлинений трубопроводов 15, 16 и 1 не возникает.

Предлагаемое устройство для компенсации температурных удлинений целесообразно устанавливать на середине прямых участков между неподвижными опорами.

Предлагаемое устройство, показанное на фиг.3 и 4, работает аналогичным образом; отличие состоит только в том, что в устройстве отсутствуют фланцы 6 и 7 (фиг.5), а соединение обеих патрубков 4 и 5 с трубопроводами 15 и 16 осуществляется с помощью сварки, то есть в этом случае применяют неразъемное соединение (показано на фиг.7).

На фиг.7 показан Г-образный участок трубопровода, расположенный между неподвижными опорами 21 и 22. Длина прямого участка трубопровода 23 равна L 4 , а трубопровода 24 равна L 5 . Трубопровод 1 (см. фиг.1), изогнут по радиусу R. Представленное устройство несколько отличается от устройства, представленного на фиг.1, а именно: на фиг.7 отсутствуют патрубки 4 и 5 с фланцами 6 и 7. Функцию патрубка выполняют трубопроводы 23 и 24, то есть трубы вставлены в концы 2 и 3 трубопровода 1 (фиг.1), хомуты 10 и 11 обеспечивают прочность и плотность соединения трубопроводов 1 с трубопроводами 23 и 24. Такое конструктивное выполнение несколько упрощает изготовление предложенного устройства, но усложняет монтаж тепловых сетей, поэтому имеет ограниченное применение. Расположение всех элементов, изображенных на фиг.7, показано при отсутствии теплоносителя в трубопроводах 23, 24 и 1.

Когда в трубопроводы 1, 23 и 24 подается теплоноситель, то трубопроводы 23 и 24 нагреваются и удлиняются (см. фиг.8). Трубопровод 23 удлиняется на величину L 4 , а трубопровод 24 удлиняется на величину L 5 . При этом торец 25 трубопровода 23 перемещается вверх, а торец 26 трубопровода 24 перемещается влево (см. фиг.8). При этом трубопровод 1, (выполнен из эластичного материала), соединяющий торцы 25 и 26 трубопроводов 23 и 24, за счет своего изгиба не препятствует перемещению трубопровода 23 вверх, а трубопровода 24 влево. При этом никаких напряжений от температурных удлинений в трубопроводах 1, 23 и 24 не возникает.

На фиг.9 показан вариант предложенного устройства, когда оно используется для Z-образной компенсации температурных удлинений. Z-образный участок трубопровода расположен между неподвижными опорами 26 и 27. длина трубопровода 28 равна L 6 , а трубопровода 29 - L 8 ; длина устройства для компенсации температурных удлинений равна L 7 Трубопровод 1 изогнут в форме буквы Z. В каждый конец 2 и 3 трубопровода 1 вставлены патрубки 4 и 5 с фланцами 6 и 7. Трубопровод 28, патрубок 4, фланцы 6 и 30 прочно и герметично соединены, например, при помощи болтов и хомутов (см. фиг.1). Аналогично соединены трубопровод 29, патрубок 5, фланцы 7 и 31. Расположение всех элементов на фиг.9 показано при отсутствии теплоносителя в трубопроводах (фиг.9). Принцип работы предложенного устройства аналогичен ранее рассмотренному устройству, см. фиг.1-8.

Когда в трубопроводы 28, 1 и 29 подается теплоноситель (см. фиг.10), трубопроводы 28, 1 и 29 нагреваются и удлиняются. Трубопровод 28 удлиняется вправо на величину L 6 ; одновременно вправо перемещаются фланцы 6 и 30, патрубок 4 и торец 2 трубопровода 1 (то есть перемещается часть трубопровода 1, присоединенная к патрубку 4, так как эти элементы соединены друг с другом и трубопроводом 28. Аналогично, трубопровод 29 удлиняется влево на величину L 8 ; одновременно влево перемещаются фланцы 7 и 31, патрубок 5 и торец 3 трубопровода 1 (то есть перемещается часть трубопровода 1, присоединенная к патрубку 5, так как эти элементы соединены друг с другом и трубопроводом 29. При этом трубопровод 1 за счет своего изгиба не препятствует перемещению трубопроводов 28 и 29. При этом никаких напряжений от температурных удлинений в трубопроводах 28, 29 и 1 не возникает.

Во всех рассматриваемых вариантах конструктивного выполнения предложенного устройства длина трубопровода L (см. фиг.1) зависит от диаметра трубопроводов тепловой сети, материала, из которого выполнен трубопровод 1 и других факторов и определяется расчетом.

Трубопровод 1 (см. фиг.1) может быть выполнен из гофрированного резинотканевого рукава (шланга), однако гофры увеличивают гидравлическое сопротивление тепловой сети, засоряются твердыми частицами, которые могут присутствовать в теплоносителе, а при наличии твердых частиц компенсирующая способность такого рукава уменьшается, поэтому такой рукав имеет ограниченное применение; применяется, когда в теплоносителе отсутствуют твердые частицы.

На основании вышеизложенного можно заключить, что предложенное устройство долговечно, проще в монтаже и более экономично по сравнению с известным устройством.

Источники информации

1. Инженерные сети. Оборудование зданий и сооружений: Учебник/ Е.Н.Бухаркин и др.; Под ред. Ю.П.Соснина. - М.: Высшая школа 2001. - 415 с.

2. Справочник проектировщика. Проектирование тепловых сетей. Под ред. Инж. А.А.Николаева. М.: Стройиздат, 1965. - 360 с.

3. Описание изобретения к патенту RU 2147104 CL F24D 17/00.

09.04.2011

Введение

В последние годы в России широко стала применяться бесканальная прокладка теплопроводов с использованием стальных предварительно изолированных труб, для компенсации температурных деформаций которых применяются стартовые сильфонные компенсаторы (СК) и предварительно изолированные сильфонные компенсационные устройства (СКУ).

Как уже описывалось ранее , применение при бесканальной прокладке стартовых компенсаторов целесообразно на тепловых сетях в тех системах теплоснабжения, где применяется количественное регулирование тепловых нагрузок. Кроме того, стартовые сильфонные компенсаторы можно использовать в регионах с мягкими климатическими условиями, когда перепады температур теплоносителя относительно средней температуры незначительны и стабильны. При качественном регулировании тепловых нагрузок в пиковые режимы отопления, а также при остывании теплоносителя и его сливе, что довольно часто происходит во многих регионах России, температурные напряжения на трубопровод и неподвижные опоры резко возрастают, что нередко приводит к авариям на стартовых компенсаторах.

Учитывая также сложности при «запуске» стартового компенсатора и ремонтах трубопровода , в большинстве регионов России применяют осевые СК. Иногда при бесканальной прокладке предизолированного теплопровода осевой сильфонный компенсатор помещают в камеру. Но в большинстве случаев применяют теплогидроизолированные СКУ, изготовленные на изоляционных заводах из осевых СК. Конструкции данных СКУ разнообразны (у каждого завода – своя конструкция), но все они имеют общие особенности:

  • гидроизоляция подвижной части СКУ не обеспечивает долговечную защиту от грунтовых вод при многократном циклическом воздействии , что приводит к намоканию тепловой изоляции, усиленной электрохимической коррозии деталей компенсатора и трубопровода, хлоридной коррозии сильфона, чего допускать нельзя , а система оперативно-дистанционного контроля (ОДК) при этом не срабатывает, т.к. сигнальные проводники внутри компенсационного устройства были проложены в изолирующем кембрике по всей его длине (до 4,5 м);
  • из-за недостаточной изгибной жесткости конструкции такого СКУ не обеспечивается защита сильфона от изгибающих моментов, поэтому возрастают требования по соосности трубопровода при монтаже.

О создании надежной конструкции теплогидроизолированного осевого СКУ

Проанализировав особенности существующих конструкций СКУ, ОАО «НПП «Компенсатор» совместно с ОАО «Объединение ВНИПИэнергопром» с 2005 г. вплотную занялось разработкой собственной конструкции полностью теплогидроизолированного осевого СКУ для бесканальной прокладки теплопроводов, обеспечивающей надежную гидроизоляцию от грунтовых вод и защиту сильфона от возможного прогиба трубопровода на протяжении всего срока эксплуатации.

В процессе разработки были испытаны различные варианты узла гидроизоляции от грунтовых вод подвижной части СКУ на циклическую наработку: уплотнительные кольца, изготовленные из резины различных марок; уплотнительные манжеты различных конфигураций профиля; сальниковая набивка. Циклические испытания опытных образцов СКУ с различными конструкциями узла гидроизоляции проводились в ванной, заполненной водно-песчаной взвесью, имитируя наихудшие условия их эксплуатации. Испытания показали, что различные виды уплотнений, работающих в условиях трения, не обеспечивают надежной гидроизоляции по нескольким причинам: возможность попадания песчинок между уплотнением и полиэтиленовой оболочкой, что со временем приведет к нарушению гидроизоляции; а также невозможность обеспечить стабильность качества установки уплотнительных колец или манжет фиксированного размера из-за большого разброса (до 14 мм) допускаемых предельных отклонений диаметра полиэтиленовой оболочки и ее овальности. Лучше всего себя показал узел гидроизоляции с применением сальниковой набивки. Но проконтролировать качество гидроизоляции сальниковой набивкой при изготовлении СКУ не представляется возможным.

Тогда было принято решение применить в качестве узла гидроизоляции дополнительный защитный сильфон в комбинации с сальниковой набивкой (подробное описание конструкции см. в работе ). Опытные образцы СКУ успешно выдержали циклические испытания, и с 2007 г. началось их серийное производство. Основным потребителем данной конструкции СКУ являются предприятия тепловых сетей Республики Беларусь, где требования к качеству и надежности строительства тепловых сетей несколько выше, чем в России. В тепловых сетях России установлено всего несколько десятков таких СКУ из-за относительно высокой их стоимости по сравнению со стоимостью компенсационных устройств, применявшихся ранее.

Тогда же начались серийные поставки упрощенной конструкции теплогидроизолированных СКУ без дополнительного защитного сильфона, но с применением антикоррозионного покрытия рабочего сильфона. Данная конструкция обеспечивает все требования , узел гидроизоляции выполнен с применением сальниковой набивки. За последние 3,5 года такие теплогидроизолированные СКУ нашли широкое применение во многих регионах РФ.

Учитывая пожелания монтажных и эксплуатирующих организаций, а также принимая во внимание высокую стоимость теплогидроизолированных СКУ с дополнительным защитным сильфоном, перед коллективом ОАО «НПП «Компенсатор» была поставлена задача создать менее трудоемкую конструкцию теплогидроизолированного СКУ, обеспечивающего надежную гидроизоляцию от грунтовых вод и «равнодушную» к возможной несоосности трубопровода.

От дополнительного защитного сильфона, значительно увеличивавшего стоимость СКУ, надо было отказываться, и тогда вновь вставал вопрос обеспечения надежной гидроизоляции. Снова рассматривались различные конструктивные решения узла гидроизоляции. От уплотнения, работающего в условиях трения, отказались сразу. Стабильность качества гидроизоляции сальниковой набивкой зависит от «человеческого фактора». Заманчиво было применить резиновую муфту, как это делают на некоторых изоляционных заводах, но проведенные испытания резиновой муфты на осевые перемещения показали, что при сжатии муфта не принимает форму гофра, а в месте стыка происходит ее излом, в котором со временем образуется разрыв муфты. Да и подобрать листовой резиновый материал и клей для него, сохраняющие свои физикомеханические свойства в течение 30 лет, весьма затруднительно, поскольку серийно выпускаемые нашей промышленностью резиновые листы не соответствуют данным требованиям.

В начале 2009 г. была разработана новая конструкция теплогидроизолированного СКУ, в которой учтены все пожелания монтажных и эксплуатирующих организаций: менее трудоемкая при изготовлении и в которой применен принципиально новый узел гидроизоляции. За основу конструкции принята отработанная конструкция СКУ для наземной и канальной прокладок теплопроводов , которые успешно эксплуатируются с 1998 г. Здесь также предусмотрены цилиндрические направляющие опоры, установленные с обеих сторон от сильфона, которые телескопически перемещаются вместе с патрубками компенсационного устройства по внутренней поверхности толстостенного кожуха и защищают сильфон от потери устойчивости при несоосности трубопровода.

Гидроизоляция подвижной части СКУ выполняется с помощью эластичной цельно-отлитой мембраны. Мембрана герметично зафиксирована на конструкции компенсационного устройства. Это позволяет гарантировать полную защиту сильфона и теплоизоляции от проникновения грунтовых вод в течение всего срока службы СКУ. Сама мембрана защищена от грунта и песка плотно набитой сальниковой набивкой. Тем самым, в новой гидроизолированной конструкции компенсационного устройства предусмотрена двухуровневая защита наружной поверхности сильфона и конструкции СКУ в целом.

Сигнальные проводники системы ОДК внутри компенсационного устройства проложены в электроизолирующем термостойком кембрике, перфорированном для возможности срабатывания системы ОДК в случае нарушения герметичности сильфона или гидроизолирующей мембраны, что маловероятно, поскольку нарушение герметичности в данной конструкции сведено к минимуму.

Вся наружная поверхность кожуха СКУ защищена от воздействия внешней среды специально разработанной термоусаживающейся полиэтиленовой манжетой. Также в новой конструкции предусмотрена теплоизоляция сильфона, позволяющая исключить возможность образования конденсата внутри СКУ.

Итак, в новой конструкции СКУ в качестве узла гидроизоляции применено принципиально новое решение – гидрозащитная эластичная мембрана. Что же это такое?

Гидрозащитная эластичная мембрана изготавливается литьем в пресс-формах из смеси на основе специально разработанного каучука и рассчитана на срок службы СКУ до 50 лет при бесканальной прокладке.

Мембрана, применяемая для гидроизоляции в конструкции СКУ, позволяет уйти от использования узла трения, как основного герметизирующего элемента. Специально спроектированная форма мембраны позволяет обеспечить ее беспрепятственное перемещение при температурных деформациях теплопровода относительно неподвижного кожуха СКУ.

Температурные испытания мембраны, проведенные ОАО «Объединение ВНИПИэнергопром», показали, что при температуре 150 ОC мембрана не теряет своих физико-механических свойств и находится в работоспособном состоянии в течение всего срока службы СКУ.

Квалификационные испытания новой конструкции теплогидроизолированного осевого СКУ с мембраной проводились летом 2009 г. совместно с представителями ОАО «Объединение ВНИПИэнергопром» и НП РТ .

При испытаниях СКУ на подтверждение вероятности безотказной работы по циклической наработке были сымитированы наихудшие условия эксплуатации: опытный образец компенсационного устройства был помещен в бочку с водой и подвергнут циклическим испытаниям осевым ходом на сжатие-растяжение. Через каждую 1000 циклов проводились контрольные замеры электрического сопротивления между патрубками СКУ и сигнальными проводниками системы ОДК при испытательном напряжении 500 В.

После отработки назначенной наработки с учетом вероятности безотказной работы (суммарно около 30000 циклов) циклические испытания были прекращены. Опытный образец СКУ был проверен на прочность и герметичность, после чего с него был удален кожух. Разрушений сильфона, мембраны, а также следов проникновения воды во внутрь СКУ не обнаружено.

Межведомственная комиссия по испытаниям «дала добро» на серийное производство теплогидроизолированных СКУ новой конструкции на ОАО «НПП «Компенсатор», которое началось в 2010 г.

По итогам поставок первых партий СКУ новой конструкции на предприятия тепловых сетей были собраны пожелания и предложения проектных и монтажных организаций, на основе анализа которых в конструкцию теплогидроизолированного СКУ были внесены изменения, касающиеся удобства монтажа и теплоизоляции стыка СКУ с трубопроводом, оптимизации массогабаритных характеристик, унификации деталей СКУ. Также был улучшен узел гидроизоляции СКУ с точки зрения повышения его надежности и защиты от механических повреждений.

«ВНИПИэнергопром» ведет постоянный мониторинг, производственные и лабораторные испытания теплогидроизолированных СКУ и иной продукции ОАО «НПП «Компенсатор» для подтверждения их технических характеристик.

Литература

  1. Логунов В.В., Поляков В.Л., Слепченок В.С. Опыт применения осевых сильфонных компенсаторов в тепловых сетях// Новости теплоснабжения. 2007. № 7. С. 47-52.
  2. Максимов Ю.И. Некоторые аспекты проектирования и строительства бесканальных термически напряженных предизолированных трубопроводов с применением стартовых компенсаторов // Новости теплоснабжения. 2008. № 1. С. 24-34.
  3. Игнатов А.А., Ширинян В.Т., Бурганов А.Д. Модернизированное сильфонное компенсационное устройство в ППУ изоляции для тепловых сетей // Новости теплоснабжения. 2008. № 3. С. 52-53.
  4. ГОСТ 30732-2006 Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана с защитной оболочкой. Технические условия.
  5. События и планы НП «Российское теплоснабжение» // Новости теплоснабжения. 2009. № 9. С. 10. Новости теплоснабжения № 4 (апрель), 2011 г.