ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Как уберечься от молнии? Защита от молний в частном доме

Современному человеку вряд ли нужно доказывать, что молниезащита — это не роскошь, а залог безопасности.

Молния - уникальное природное явление, которое еще не до конца изучено, но, несмотря на это, может нанести значительный вред людям и окружающим предметам. Проблема защиты от молнии актуальна для всех людей, которые беспокоятся о сохранности здоровья и техники.

Прямое попадание молнии в незащищенное строение может вызвать пожар, вывести из строя электроприборы. Молниезащита одинаково важна как для частного дома, так и для промышленных объектов и трансформаторных подстанций.

Защита от молнии может осуществляться несколькими способами. Самый распространенный метод - классический. Открыл его еще в восемнадцатом веке Бенджамин Франклин. Способ этот прост и довольно эффективен, заключается он в установке молниеотвода, который принимает на себя разряд молнии.

Грозозащита - это специальное устройство, защищающее оборудование от статического электричества. Как известно, статическое электричество проявляется в виде атмосферного электричества, удара молний, накопления статики во время осадков и т. д.

Как правило, грозозащита представляет собой диодный мост с защитным диодом, срабатывающим при возникновении разницы потенциалов между защищаемыми проводами более 6-7 В. Как следствие - провода замыкаются накоротко, а излишки статического напряжения отводятся при помощи специальной схемы.

Специалистам легко дается решение проблемы защиты от грозы (грозозащиты или молниезащиты) зданий. На сегодняшний день можно защитить дом и его обитателей от всех существующих поражающих факторов молнии - таких как непосредственное попадание молнии в здание, перенапряжения в сетях (коммутационные или грозовые), вторичное проявление разряда и т. п.

В состав надежной грозозащиты зданий и оборудования входят следующие составляющие:

Грозозащита внутри здания - это защита от повреждений, возникших из-за непрямого попадания молнии в тот или иной объект. Таким образом, оборудование защищено от импульсов перенапряжений, которые возникают в результате влияния молниевого тока.

Внешняя молниезащита - защита от прямых ударов молнии, которые иногда подвергают здание возгоранию. Внешняя защита отводит ток молнии в землю.

Защита электроприборов от грозы является - обязательное условие бесперебойной работы торговых центров, фабрик, офисных зданий, заводов и других крупных и важных объектов. Грозозащиту осуществляют разными способами - все зависит от типа прибора.

Каждая деталь молниезащиты должна быть качественной и прочной. В противном случае последствия могут непредсказуемыми.

Еще одна защита от молнии - это активная система (азс). Специальный элемент устанавливается в доме и ионизирует пространство вокруг себя. Таким образом, формируется защитная зона, и в случае удара молнии разряд притянется к специальной антенне на крыше. Разряд пройдет по токоотводу и уйдет в землю.

Специалисты выделяют несколько категорий молниезащиты. Применение той или иной системы зависит от предназначения строения, уровня пожароопасности и др.

Монтаж системы молниезащиты должен осуществляться опытными специалистами. Первый этап работ — проектирование, тщательный расчет всех параметров. Для этого существуют специальные компьютерные программы. Следует учитывать высоту зданий, особенности их конфигурации и другие детали. Специалисты нашей компании составляют индивидуальный проект молниезащиты для каждого клиента, что гарантирует его высокую эффективность.

Стоит отметить, что защита от молнии должна распространяться не только на наружную часть здания, но и внутреннюю. Поэтому актуальным в последнее время становится использование защиты от импульсных перенапряжений, сокращенно УЗИП.

Принцип действия устройства очень прост. После попадания молнии и появления высокого напряжения специальные резисторы перегорают. Остается просто заменить их на новые. Есть и многоразовые ограничители, но они стоят гораздо дороже. Таким образом, молниезащита предотвращает перенапряжение и обеспечивает надежную работу техники.

Грозозащита защищает разнообразное оборудование и приборы от отключения и повреждения.

Более того, она просто необходима для использования с целью изоляции воздушных линий от импульсных перенапряжений, которые вызываются магнитным полем молнии. Не обойтись без грозозащиты и для предупреждения пережогов замыканий электросетей и проводов.

Монтаж молниезащиты происходит следующим образом. Громоотвод устанавливается на изолированные подпорки, а крепление осуществляется на самой высокой точке кровли. Затем к молниеотводу приваривается токоотвод - специальный проводник, изготовленный из полосовой стали с цинковым покрытием. Токоотвод спускается с кровли и надежно заземляется.

Молния всегда будила фантазию человека и стремление познавать мир. Она принесла на землю огонь, приручив который, люди стали могущественнее. Мы пока не рассчитываем на покорение этого грозного природного явления, но хотели бы «мирного сосуществования». Ведь чем совершеннее создаваемая нами техника, тем опаснее для нее атмосферное электричество. Один из способов защиты - заранее, с помощью специального имитатора, оценивать уязвимость промышленных объектов для тока и электромагнитного поля молнии.

Любить грозу в начале мая легко поэтам и художникам. Энергетик, связист или космонавт от начала грозового сезона в восторг не придет: слишком большие неприятности он обещает. В среднем на каждый квадратный километр территории России ежегодно приходится около трех ударов молний. Их электрический ток доходит до 30 000 А, а у самых мощных разрядов может превысить 200 000 А. Температура в хорошо ионизированном плазменном канале даже умеренной молнии может достигать 30000 °С, что в несколько раз больше, чем в электрической дуге сварочного аппарата. И конечно, это не сулит ничего хорошего многим техническим объектам. Пожары и взрывы от прямого попадания молнии хорошо знакомы специалистам. А вот обыватели риск подобного события явно преувеличивают.

Наконечник флагштока останкинской телебашни. Видны следы оплавленияВ реальности «небесная электрозажигалка» не столь уж эффективна. Представьте: вы пытаетесь развести огонь во время урагана, когда из-за сильного ветра трудно зажечь даже сухую солому. Еще мощнее воздушный поток от канала молнии: ее разряд рождает ударную волну, громовой раскат которой срывает и гасит пламя. Парадокс, но слабая молния пожароопаснее, особенно, если по ее каналу в течение десятых долей секунды (целая вечность в мире искровых разрядов!) протекает ток около 100 А. Последний мало чем отличается от дугового, а электрическая дуга подожжет все, способное гореть.

Впрочем, для здания обычной высоты попадание молнии — явление не частое. Опыт и теория показывают: она «притягивается» к наземному сооружению с расстояния, близкого к трем его высотам. Десятиэтажная башня соберет около 0,08 молний ежегодно, т.е. в среднем 1 удар за 12,5 лет эксплуатации. Дачный домик с мансардой — примерно в 25 раз меньше: в среднем владельцу придется «ждать» около 300 лет.

Но не будем и преуменьшать опасность. Ведь если молния ударит хотя бы в один из 300-400 поселковых домов, местные жители вряд ли сочтут это событие ничтожным. А есть объекты гораздо большей протяженности — скажем, линии электропередачи (НЭП). Их длина вполне может превысить 100 км, высота — 30 м. Значит, справа и слева каждая из них соберет удары с полос шириной по 90 м. Общая площадь «стягивания» молний превысит 18 км2, их число — 50 за год. Разумеется, стальные опоры линии при этом не сгорят, провода не расплавятся. В наконечник флагштока Останкинской телебашни (Москва) молнии ударяют примерно 30 раз в год, однако ничего страшного не происходит. А чтобы понять, чем они опасны для ЛЭП, нужно познать природу электрических, а не термических воздействий.

ГЛАВНАЯ СИЛА МОЛНИИ

При ударе в опору электрической линии ток стекает в землю через сопротивление заземления, которое, как правило, составляет 10-30 Ом. При этом даже «средняя» молния, с током 30 000 А, создает напряжение 300-900 кВ, а мощная — в несколько раз больше. Так возникают грозовые перенапряжения. Если они достигают мегавольтного уровня, изоляция ЛЭП не выдерживает и пробивается. Происходит короткое замыкание. Линия отключается. Еще хуже, когда канал молнии прорывается непосредственно к проводам. Тогда перенапряжение на порядок выше, чем при поражении опоры. Борьба с этим явлением и сегодня остается трудной задачей электроэнергетиков. Причем по мере совершенствования техники ее сложность лишь нарастает.

Останкинская телебашня выступила в роли молниеотвода, пропустив удар молнии на 200 м ниже вершиныЧтобы удовлетворить стремительно растущие потребности человечества в энергии, современные электростанции должны объединяться в мощные системы. В России сейчас функционирует единая энергетическая система: все ее объекты работают взаимосвязанно. Поэтому случайный выход из строя даже одной ЛЭП или электростанции может привести к серьезным последствиям, похожим на происшедшее в Москве в мае 2005 г. В мире отмечено немало системных аварий по вине молний. Одна из них — в США в 1968 г. нанесла многомиллионный ущерб. Тогда грозовой разряд отключил одну ЛЭП, и энергосистема не справилась с возникшим дефицитом энергии.

Неудивительно, что защите ЛЭП от молний специалисты уделяют должное внимание. По всей длине воздушных линий напряжением 110 кВ и более подвешивают специальные металлические тросы, стремясь сверху уберечь провода от прямого попадания. Их изоляцию максимально усиливают, сопротивление заземления опор предельно снижают, а для дополнительного ограничения перенапряжений используют полупроводниковые устройства, подобные тем, что защищают входные цепи компьютеров или высококачественных телевизоров. Правда, их сходство — только в принципе действия, рабочее же напряжение для линейных ограничителей исчисляется миллионами вольт — оцените масштабы затрат на защиту от молнии!

Часто спрашивают, реально ли спроектировать абсолютно молниестойкую линию? Ответ однозначный — да. Но тут неизбежны два новых вопроса: кому это надо и сколько будет стоить? Ведь если нельзя повредить надежно защищенную ЛЭП, то можно, например, сформировать ложную команду на отключение линии или просто разрушить низковольтные цепи автоматики, которые в современном исполнении построены на микропроцессорной технике. Рабочее напряжение микросхем с каждым годом снижается. Сегодня оно исчисляется единицами вольт. Вот где простор для молнии! И нет нужды в прямом ударе, ибо она способна действовать дистанционно и сразу на больших площадях. Главным ее оружием становится электромагнитное поле. Выше говорилось о токе молнии, хотя для оценки электродвижущей силы магнитной индукции важен и ток, и скорость его роста. У молнии последняя может превышать 2 . 1011 А/с. В любом контуре площадью 1 м2 на расстоянии 100 м от канала молнии такой ток наведет напряжение примерно вдвое выше, чем в розетках жилого дома. Не нужно большой фантазии, чтобы представить судьбу микросхем, рассчитанных на напряжение порядка одного вольта.

В мировой практике известно множество тяжелых аварий из-за разрушения цепей управления грозовым разрядом. В этот перечень попадают повреждения бортовой аппаратуры авиалайнеров и космических кораблей, ложные отключения сразу целых «пакетов» высоковольтных ЛЭП, выход из строя аппаратуры антенных систем мобильной связи. К сожалению, заметное место здесь занимают и «бьющие» по карману обычных граждан повреждения бытовой техники, все больше заполняющей наши дома.

ПУТИ ЗАЩИТЫ

Мы привыкли рассчитывать на защиту молниеотводами. Помните оду великого естествоиспытателя XVIII в., академика Михаила Ломоносова на их изобретение? Наш знаменитый соотечественник восторгался победой, говорил, что небесный огонь перестал быть опасным. Конечно, это приспособление на крыше жилого дома не даст молнии поджечь деревянный настил или другие горючие строительные материалы. В отношении же электромагнитных воздействий он бессилен. Совершенно безразлично, течет ли ток молнии в ее канале или по металлическому стержню молниеотвода, все равно он возбуждает магнитное поле и наводит за счет магнитной индукции во внутренних электрических цепях опасное напряжение. Для эффективной борьбы с этим молниеотвод обязан перехватывать канал разряда на отдаленных подступах к защищаемому объекту, т.е. стать очень высоким, потому что наводимое напряжение обратно пропорционально расстоянию до проводника с током.

Сегодня накоплен большой опыт использования таких конструкций разной высоты. Однако статистика не слишком утешительная. Зону защиты стержневого молниеотвода обычно представляют в виде конуса, осью которого он является, но с вершиной, расположенной несколько ниже, чем его верхний конец. Обычно 30-метровый «стержень» обеспечивает 99%-ную надежность защиты здания, если возвышается над ним примерно на 6 м. Добиться этого — не проблема. Но с увеличением высоты молниеотвода расстояние от его вершины до «прикрываемого» объекта, минимально необходимое для удовлетворительной защиты, стремительно нарастает. Для 200-метровой конструкции той же степени надежности этот параметр уже превышает 60 м, а для 500-метровой — 200 м.

В подобной роли выступает и упомянутая Останкинская телебашня: она не в состоянии защитить самое себя, пропускает удары молнии на расстоянии 200 м ниже вершины. Радиус зоны защиты на уровне земли для высоких молниеотводов также резко увеличивается: у 30-метрового он сопоставим с его высотой, у той же телебашни — 1/5 ее высоты.

Иными словами, нельзя надеяться, что молниеотводы традиционной конструкции сумеют перехватить молнию на дальних подступах к объекту, особенно если последний занимает большую площадь на поверхности земли. Значит, нужно считаться с реальной вероятностью грозового разряда в территорию электрических станций и подстанций, аэродромов, складов жидкого и газообразного топлива, протяженных антенных полей. Растекаясь в земле, ток молнии частично попадает в многочисленные подземные коммуникации современных технических объектов. Как правило, там находятся электрические цепи систем автоматики, управления и обработки информации - тех самых микроэлектронных устройств, о которых говорилось выше. Кстати, расчет токов в земле сложен даже в самой простейшей постановке. Трудности усугубляются из-за сильных изменений сопротивления большинства грунтов в зависимости от силы растекающихся в них токов килоамперного уровня, как раз свойственных разрядам атмосферного электричества. К расчету цепей с такими нелинейными сопротивлениями неприменим закон Ома.

К «нелинейности» грунта добавляется вероятность образования в нем протяженных искровых каналов. Ремонтные бригады кабельных линий связи хорошо знакомы с такой картиной. От высокого дерева на лесной опушке по земле тянется борозда, будто от сохи или старинного плуга, и обрывается точно над трассой подземного телефонного кабеля, который в этом месте поврежден - металлическая оболочка смята, изоляция жил разрушена. Так проявилось действие молнии. Она ударила в дерево, и ее ток, растекаясь по корням, создал в грунте сильное электрическое поле, сформировал в нем плазменный искровой канал. Фактически молния как бы продолжила свое развитие, только не по воздуху, а в земле. И так она может проходить десятки, а в особенно плохо проводящих ток грунтах (скальных или вечномерзлых породах) и сотни метров. Прорыв ее к объекту осуществляется не традиционным путем — сверху, а, минуя любые молниеотводы, снизу. Скользящие разряды вдоль поверхности грунта хорошо воспроизводятся в лаборатории. Все эти сложные и сильно нелинейные явления нуждаются в экспериментальном исследовании, моделировании.

Ток для рождения разряда может быть сформирован искусственным импульсным источником. Энергия около минуты накапливается в конденсаторной батарее, а потом за десяток микросекунд «выплескивается» в бассейн с грунтом. Подобные емкостные накопители есть во многих высоковольтных исследовательских центрах. Их габариты достигают десятков метров, масса — десятков тонн. Такие не доставишь на территорию электрической подстанции или другого промышленного объекта, чтобы в полном масштабе воспроизвести условия растекания токов молнии. Это удается разве что случайно, когда объект соседствует с высоковольтным стендом — например, в открытой установке Сибирского научно-исследовательского института энергетики импульсный генератор высоких напряжений размещен рядом с ЛЭП в 110 кВ. Но это, конечно, исключение.

ИМИТАТОР УДАРА МОЛНИИ

На деле же речь должна идти не об уникальном эксперименте, а о рядовой ситуации. В полномасштабной имитации тока молнии крайне нуждаются специалисты, поскольку только так можно получить достоверную картину распределения токов по подземным коммуникациям, измерить последствия воздействия электромагнитного поля на устройства микропроцессорной техники, определить характер распространения скользящих искровых каналов. Соответствующие испытания должны стать массовыми и производиться до ввода в эксплуатацию каждого принципиально нового ответственного технического объекта, как это давно делается в авиации, космонавтике. Сегодня нет иной альтернативы, кроме создания мощного, но малогабаритного и мобильного источника импульсных токов с параметрами тока молнии. Его макетный образец уже существует и успешно испытан на подстанции «Донино» (110 кВ) в сентябре 2005 г. Все оборудование разместилось в заводском прицепе от серийной «Волги».

Мобильный испытательный комплекс построен на основе генератора, который преобразует механическую энергию взрыва в электрическую. Этот процесс в основном хорошо известен: он имеет место в любой электрической машине, где механическая сила движет ротор, противодействуя силе его взаимодействия с магнитным полем статора. Принципиальное различие же состоит в исключительно высокой скорости выделения энергии при взрыве, быстро разгоняющего металлический поршень (лайнер) внутри катушки. Он за микросекунды вытесняет магнитное поле, обеспечивая возбуждение высокого напряжения в импульсном трансформаторе. После дополнительного усиления импульсным трансформатором напряжение формирует ток в испытуемом объекте. Идея этого устройства принадлежит нашему выдающемуся соотечественнику, «отцу» водородной бомбы академику А.Д. Сахарову.

Взрыв в специальной высокопрочной камере разрушает лишь катушку длиной 0,5 м и лайнер внутри нее. Остальные элементы генератора используют многократно. Схему можно настроить так, чтобы скорость роста и длительность формируемого импульса соответствовали аналогичным параметрам тока молнии. Причем его удается «вогнать» в объект большой длины, например, в провод между опорами ЛЭП, в контур заземления современной подстанции или в фюзеляж авиалайнера.

При испытаниях макетного образца генератора в камеру заложили всего 250 г взрывчатки. Этого достаточно для формирования импульса тока амплитудой до 20 000 А. Правда, для первого раза на столь радикальное воздействие не пошли — ток ограничили искусственно. При запуске установки раздался лишь легкий хлопок погашенного камерой взрыва. А проверенные затем записи цифровых осциллографов показали: импульс тока с заданными параметрами успешно был введен в молниеотвод подстанции. Датчики отметили скачок напряжения в различных точках контура заземления.

Ныне штатный комплекс в процессе подготовки. Он будет настроен на полномасштабную имитацию токов молнии и при этом разместится в кузове серийного грузовика. Взрывная камера генератора рассчитана на работу с 2 кг взрывчатки. Есть все основания считать, что комплекс окажется универсальным. С его помощью можно будет испытывать на устойчивость к воздействию тока и электромагнитного поля молнии не только электроэнергетические, но и другие крупногабаритные объекты новой техники: АЭС, телекоммуникационные устройства, ракетные комплексы и т.д.

Хотелось бы закончить статью на мажорной ноте, тем более, что для этого есть основания. Ввод штатного испытательного комплекса позволит объективно оценивать эффективность самых современных защитных средств. Тем не менее, какая-то неудовлетворенность все равно остается. Фактически человек снова идет на поводу у молнии и вынужден мириться с ее своеволием, теряя при этом немало денег. Применение средств молниезащиты приводит к увеличению габаритов и веса объекта, растут затраты дефицитных материалов. Вполне реальны парадоксальные ситуации, когда размеры защитных средств превышают таковые защищаемого конструктивного элемента. В инженерном фольклоре хранится ответ известного авиаконструктора на предложение спроектировать абсолютно надежный самолет: такую работу можно выполнить, если заказчик смирится с единственным недостатком проекта — самолет никогда не оторвется от земли. В молниезащите сегодня происходит нечто подобное. Вместо наступления специалисты держат круговую оборону. Чтобы вырваться из порочного круга, нужно понять механизм формирования траектории молнии и найти средства управления этим процессом за счет слабых внешних воздействий. Задача сложная, но далеко не безнадежная. Сегодня ясно, что молния, движущаяся от облака к земле, никогда не ударяет в наземный объект: от его вершины навстречу приближающейся молнии прорастает искровой канал, так называемый встречный лидер. В зависимости от высоты объекта он вытягивается на десятки метров, иногда на несколько сотен и встречает молнию. Конечно, это «свидание» происходит не всегда — молния может промахнуться.

Но вполне очевидно: чем раньше возникнет встречный лидер, тем дальше он продвинется к молнии и, значит, больше шансов на их встречу. Следовательно, нужно научиться «тормозить» искровые каналы от защищаемых объектов и, напротив, стимулировать от молниеотвода. Основание для оптимизма внушают те весьма слабые внешние электрические поля, в которых формируется молния. В грозовой обстановке поле у земли около 100-200 В/см — примерно такое же, как на поверхности электрического шнура утюга или электробритвы. Раз молния довольствуется такой малостью, значит столь же слабыми могут быть управляющие ею воздействия. Важно только понять, в какой момент и в каком виде они должны быть поданы. Впереди трудная, но интересная исследовательская работа.

Академик Владимир ФОРТОВ, Объединенный институт физики высоких температур РАН, доктор технических наук Эдуард БАЗЕЛЯН, Энергетический институт им. Г.М. Кржижановского.

Надежный громоотвод на дачном участке позволит не только защитить человека от поражения молнией, но и дом от возгорания, особенно если он деревянный. Состоит хорошая система молниезащиты из заземлителя, токоотвода и молниеприемника. Далее мы расскажем читателям о том, какими должны быть все элементы системы и как сделать громоотвод в частном доме своими руками!

Принцип работы системы

Для начала разберемся с тем, как работает молниезащита частного дома и что нужно для ее создания. Наглядно увидеть все составляющие элементы системы Вы можете на данной схеме:

Как Вы уже поняли, металлические стержни на крыше являются молниеприемниками, которые отводят опасный разряд на землю через токоотвод и специальное заземление.

Бытует мнение, что если рядом с домом установлена телефонная вышка, можно не делать громоотвод в частном доме. Это неправильно, т.к. лучше потратить чуть-чуть времени и обеспечить себе полную защиту от удара молнией. Чтобы Вы знали, каким должен быть молниеотвод и как его правильно сделать своими руками, ниже мы по отдельности рассмотрим особенности выбора каждого из элементов системы.

Краткий обзор по монтажу молниезащиты

Составляющие элементы защиты

Молниеприемник

Основная задача – правильно подобрать молниеприемник, который должен обеспечить полную защиту дачного домика в зоне своего действия. На сегодняшний день в качестве приемника молнии может выступать штырь, сетка, трос либо сама крыша. Подробно рассмотрим особенности применения каждого из вариантов в частном доме.

Что касается штыря, существуют уже готовые изделия от производителей, которые имеют подходящую форму и удобное крепление. Как правило, металлом изготовления молниеприемника является медь, алюминий либо сталь. Наиболее подходящим и эффективным является первый вариант. Для того, чтобы приемник хорошо справлялся со своей задачей, его сечение должен быть не меньше 35 мм 2 (если медь) либо 70 мм 2 (стальной стержень). Что касается длины стержня, в бытовых условиях рекомендуется применять приемники длиной от 0,5 до 2 метров. Штыри удобно использовать для того, чтобы сделать громоотвод на садовом домике, бане либо другой, небольшой постройке.

Металлическая сетка также может продаваться в уже готовом виде. Как правило, сетчатый молниеприемник представляет собой ячеистый каркас из арматуры, толщиной 6 мм. Размер ячеек может составлять от 3 до 12 метров. Чаще всего такой вариант молниезащиты используется в многоквартирных домах и больших зданиях, к примеру, торговых центрах.

Трос более практичен в домашних условиях и справляется с задачей лучше, чем сетка. Чтобы сделать громоотвод в частном доме с помощью троса, нужно растянуть его вдоль крыши (по коньку) на деревянных брусках, как показано на фото ниже. Минимальный диаметр троса для молниезащиты здания должен быть 5 мм. Как правило, такой вариант используют, если хотят своими руками сделать молниеотвод на доме с шиферной крышей.

Ну и последний вариант – кровля в качестве приемника, может использоваться в том случае, если крыша жилого дома крыта профнастилом, металлочерепицей либо другим металлическим кровельным материалом. При таком варианте громоотвода к крыше предъявляются два важных требования. Во-первых, толщина металла должна быть не менее 0,4 мм. Во-вторых, под кровлей не должно быть легковоспламеняющихся материалов. Сделать громоотвод в частном доме с металлической крышей можно намного быстрее и при этом сэкономив на покупке специальных молниеприемников.

Обращаем Ваше внимание на то, что если Вы будете использовать сетку, ее монтаж должен осуществляться на высоте не менее 15 см над самой крышей!

Токоотвод

Заземлитель

Ну и последний элемент громоотвода – заземляющий контур. Чтобы не делать материал слишком объемным, мы выделили под данный вопрос отдельную статью – . Рекомендуем ознакомиться с информацией, чтобы Вы знали все тонкости данного этапа.

Вкратце можно сказать, что контур заземления должен находиться рядом с домом, но не в прогулочной части участка, а, наоборот, ближе к ограждению. Отвод заряда на землю осуществляется металлическими стержнями, закопанными в почву на глубину 0,8 метров. Все стержни лучше размещать по схеме треугольник, которая как раз и показана на фото:

Итак, с составляющими элементами молниезащиты на крыше мы ознакомились, теперь рассмотрим, как правильно сделать громоотвод своими руками.

Надежный громоотвод на даче — видео урок по созданию

Инструкция по изготовлению

Чтобы Вам было понятнее, как самому собрать систему громоотвода частного дома в единое целое, предоставляем пошаговую инструкцию с фото примерами.

Грозовой разряд очень опасен, так как его величина может достигать нескольких сотен тысяч вольт. После каждой грозы выходит из строя техника, повреждаются линии электропередач, а также могут пострадать люди. Куда ударит молния определить нельзя, поэтому ошибочно полагать, что это явление обойдет стороной ваш дом.

Молния может ни разу не попасть в тот или иной участок электросетей и соответственно опасность грозы может недооцениваться. Если молния за несколько лет ни разу не попала в тот или иной участок электросети, то это не значит, что такая возможность исключена.

Возникновение в бытовой электросети грозового перенапряжения при отсутствии соответствующей защиты приведет к выходу из строя бытовых электроприборов, включенных в тот момент в сеть, а также существует опасность того, что пострадают жители дома. Следовательно, необходимо позаботиться о защите домашней электропроводки от грозовых перенапряжений, чтобы избежать возможных негативных последствий.

Прежде всего, следует отметить, что защиту от перенапряжений должны обеспечивать снабжающие организации путем установки на линиях электропередач соответствующих защитных устройств. Но, как часто бывает на практике, большинство воздушных линий электропередач находятся в неудовлетворительном состоянии и не имеют должной . В таком случае вопрос защиты домашней электропроводки от возможных перенапряжений - это проблема самих потребителей.

Модульные ограничители перенапряжений

Для защиты электросетей на распределительных подстанциях, а также непосредственно на воздушных линиях электропередач применяются нелинейные ограничители перенапряжений, так называемые ОПН.

Основной конструктивный элемент данных защитных устройств - варистор, элемент с нелинейными характеристиками. Нелинейность характеристик заключается в изменении сопротивления варистора в зависимости от величины приложенного к нему напряжения.

В нормальном режиме работы электросети, когда напряжение находится в пределах номинальных значений, ограничитель напряжения имеет большое сопротивление и не проводит ток. В случае возникновения импульса перенапряжения, который возникает при попадании молнии в провода электрической сети, сопротивление варистора ОПН резко снижается до минимальных значений и нежелательный импульс уходит в , к которому подсоединен ограничитель перенапряжения.

Таким образом, ОПН ограничивает скачки напряжения до безопасного уровня, тем самым защищая оборудование и потребителей от повреждения и других негативных последствий перенапряжений.

Для реализации защиты от перенапряжений в домашней электропроводке существуют компактные модульные ограничители перенапряжений. Такое защитное устройство устанавливается в домашний распределительный щиток и не занимает много места.

Модульный ОНП имеет такой же принцип работы, как и ограничители, применяемые в электросетях. Соответственно он будет работать только при наличии рабочего заземления электропроводки. В противном случае установка модульного ОПН будет бесполезна, так как в случае возникновения перенапряжения в сети опасный импульс не будет ограничен.

То есть для реализации защиты домашней электропроводки от грозовых перенапряжений при помощи модульного ограничителя перенапряжений обязательным условием должно быть , предусмотренного конфигурацией электрической сети или же индивидуального заземляющего контура.

Что касается реле напряжения, а также устройств, имеющих соответствующую функцию (стабилизатор, источник бесперебойного питания и др.), то следует учитывать, что данные устройства могут работать в заданных пределах рабочего напряжения, их изоляция не способна выдерживать высокие напряжения.

Поэтому в случае попадания молнии грозовой импульс повредит реле напряжения и другие устройства, имеющие соответствующую функцию, не только выйдут из строя, но также повредятся другие электроприборы, включенные в сеть, так как опасный импульс пойдет дальше по электропроводке и включенным в сеть бытовым электроприборам.

То есть реле напряжения не может выполнять функцию защиты от грозовых импульсов. Но все же данное защитное устройство должно быть установлено в .

Реле напряжения осуществляет отключение электропроводки в случае выхода напряжения за границы допустимых пределов, так как чрезмерное снижение или увеличение напряжения бытовой электрической сети может привести к выходу из строя бытовых электроприборов.

Сетевые фильтры


Большинство сетевых фильтров имеют встроенный варистор, то есть данные устройства осуществляют защиту включенных электроприборов от скачков напряжения. Многие люди приобретают и считают, что включенная в него техника будет защищена от возможных перепадов напряжения. Но при этом в большинстве случаев не учитывается тот факт, что варистор сетевого фильтра, как и в ограничителе напряжения, ограничивает опасный импульс перенапряжения только при наличии рабочего заземления электропроводки.

В сетевом фильтре варистор соединяет фазный или нулевой проводник электропроводки с защитным заземляющим проводником и в случае возникновения перенапряжения опасный импульс уходит в заземляющий контур по заземляющему проводнику, тем самым защищая электроприборы от повреждения. Поэтому включение сетевого фильтра в сеть, не имеющую рабочего заземления, сводит на нет защитную функцию - бытовые электроприборы не будут иметь защиты и в случае возникновения грозового импульса выйдут из строя.

Другие пути попадания грозовых импульсов

Защита домашней электропроводки от попадания грозовых импульсов не позволяет полностью защитить электроприборы от попадания молнии. Не стоит забывать, что молния может ударить не только в провода электрических сетей, но и в кабельные линии другого назначения, которые проложены открытым способом. В данном случае речь идет о сетевом кабеле интернета, телевизионном и телефонном кабеле. Также молния может попасть в установленную вне помещения антенну.

При попадании молнии в кабель или антенну грозовой разряд попадает в устройство, которое к ним подключено. То есть можно сделать вывод, что наличие защиты бытовой электрической сети от грозовых импульсов не исключает попадание опасных импульсов другим путем.

Многие люди при приближении грозы сразу отключают от сети телевизор, компьютер или другую технику, которая имеет внешнюю антенну или подключена к внешним кабельным сетям. После грозы, включив технику в сеть оказывается, что она вышла из строя по причине попадания грозового импульса через внешний кабель или антенну.

Какие меры защиты существуют в данном случае? Чтобы исключить возможное попадание грозового импульса через кабель необходимо его отключить от устройства. Например, отключить сетевой кабель от компьютера или маршрутизатора, либо если идет речь о телевизоре - отключить антенный кабель или кабель кабельного телевидения.

Существуют также специализированные грозозащитные устройства для защиты сетевых кабелей и устройств от разрядов молнии. Но данные устройства достаточно дорогие и соответственно в быту не используются. Более того, они могут оказаться вовсе неэффективными и не обеспечить защиту в случае необходимости.

В заключении следует отметить, что попадание разряда молнии в бытовые электроприборы, электропроводку очень опасно для людей, находящихся в данный момент в непосредственной близости к данным электроприборам, элементам электропроводки. Если бытовой электроприбор, поврежденный разрядом молнии, можно отремонтировать либо приобрести новый, то для человека это может закончиться плачевно.

Также не исключено возгорание техники или электропроводки в результате попадания грозового импульса. Следовательно, нельзя пренебрегать защитой домашней электропроводки от грозовых перенапряжений, а также стараться по возможности отключать сетевые кабели и внешние антенны в случае приближения грозы.

Андрей Повный

Грозы постоянно гремят над землей, летом чаще, зимой почти никогда. Хотя по статистике, гибель от удара молнии случается очень редко, никогда не следует недооценивать эту опасность. В горах грозы возникают чаще, чем на равнинах.
Наиболее часто молнии попадают в отдельно стоящие и выступающие предметы, поэтому нельзя укрываться в грозу возле одиноко стоящих деревьев, скальных отрогов и других высоких предметов на местности (геодезические знаки, вершина открытого холма). От них нужно отойти метров на 15-20.

В деревья разных пород молнии попадают с различной частотой:

Во время грозы опасно находиться в воде или поблизости от нее, ставить палатку у самой воды тоже нельзя, т.к. молнии часто бьют в речные берега. Наиболее безопасно использовать для убежища: сухие равнины, ложбины между холмами. Прямое поражение молнией приводит к смертельному исходу. Но, помимо этого, атмосферное электричество может принести немало других неприятностей.

Электромагнитная индукция — происходит в тех случаях, когда основной поток электричества проходит на удалении до 1 метра от человека, в его теле, как и любом проводнике, возникают индукционные токи Фуко — это также опасно, как и прямое попадание.

Электростатическая индукция — несильное покалывание на подошвах или ладонях, т.е. в точках соприкосновения тела со склоном – само по себе это неопасно, но может напугать неопытного путешественника.

Эффект короны (огонь святого Эльма) — потенциала грозы недостаточно для разряда, тогда может начаться медленное стекание заряда с выступающих предметов (острых форм поверхности). Возникает легкое потрескивание, в темноте видны голубые искорки (свечение), небольшое покалывание на кончике носа, ушах и пальцах рук. При отсутствии головного убора волосы электризуются, поднимаются и потрескивают, металлические детали ледоруба, поднятого вверх, также потрескивают и светятся. Такое явление не представляет опасности, но всё же является «последним» предупреждением о надвигающейся грозе и напоминанием о необходимости спуска вниз с выступающих форм рельефа.

Помните, что попытки определения степени электризации воздуха с помощью поднятого ледоруба или другого железного предмета, может окончиться летальным исходом.

Токи земли

Электрический заряд, попадая на землю, распространяется как по её поверхности, так и в ее толще по пути наименьшего сопротивления. При грозе необходимо спуститься с возвышенных форм рельефа на равнину. Нельзя прятаться в нишах скал, небольших ямках или впадинах на склоне. Не следует располагаться у входа в пещеру. Это все может привести к поражениям токами земли.

В условиях среднегорья или нахождения в зоне леса нельзя располагаться в непосредственной близости от костра. Проводимость сильно нагретого воздуха резко возрастает, потому что столб горячего воздуха (хорошего проводника тока) часто превышает высоту окружающих деревьев — способствует разряду молнии именно в костер, а не в дерево.

Одиночное дерево может служить защитой от молнии, но располагаться нужно не ближе 1,5 м от ствола.

Водоносные слои и глинистые почвы — опасны из-за поражения токами земли. Лучше найти песчаную почву, каменистую осыпь или морену.

  • В грозу нужно сесть на корточки, согнуться, обхватить колени руками или сесть на поверхность склона, колени подтянуть к груди и обхватить их руками. Голова в обоих случаях касается колен, которые нужно обхватить руками.
  • Ступни ног вместе. Положение при котором голова, грудь или спина служат точками контакта со склоном — является недопустимым.

Предсказание погоды

Чаще всего гроза случается во второй половине дня. Поэтому особо опасные горные хребты следует проходить рано утром.

Услышав вдали раскаты грома, периодически контролируйте расстояние до грозы. Для этого необходимо измерить, сколько секунд прошло от вспышки молнии до раската грома. Разделите полученное число на 3 и узнаете расстояние до грозы (в километрах).

Если гроза приближается, то не стоит дожидаться момента, когда молнии начнут бить в ста метрах от вас. Лучше заранее выполнить следующие рекомендации :

Меры предосторожности во время грозы

  1. Уйти с открытого места. Если вы на вершине горы или на горном хребте, то нужно как можно скорее уйти с высоты вниз.
  2. Полностью выключить мобильные телефоны, рации и прочие «активные» электроприборы. Для большей надежности рекомендуют извлечь из них аккумуляторы.
  3. Выбрать место для укрытия. Гроза редко длится больше часа, но и за то время можно основательно промокнуть и замерзнуть. Поэтому желательно найти скальный навес, глубокую щель, пещеру или просто натянуть тент (поставить палатку) в сухой ложбине или карстовой воронке.
  4. Пещера станет укрытием, а не могилой только в том случае, если в ней достаточно места, чтобы сидеть не ближе 1 метра к любой из стенок, и не ближе 3 метров к потолку. Нельзя стоять у входа — бегущий сверху разряд может использовать вас как перемычку.
  5. Есть возможность использовать высокую (не менее 10 м) отдельно стоящую скалу, как громоотвод. Такая скала защитит от прямого удара, однако сохраняется возможность поражения через влажную почву. Поэтому нужно максимально изолироваться от земли. Опять же, сидеть нужно не ближе 1 метра от скалы (но и не дальше, чем на расстоянии равном высоте скалы).
  6. Если гроза настигла вас в лесу, то нужно выбрать участок с более-менее одинаковыми по высоте деревьями и стать между деревьями (а не под ними). Стоит держаться подальше от дубов (их особенно часто поражает молния).
  7. Выбирая место для убежища, крайне важно избежать соседства с любой влагой. Озеро, ручей, большая лужа на дне воронки могут «притянуть» молнию. А участки мха и лишайников, или трещины заполненные влажным грунтом могут «провести» электричество даже внутрь глубоких пещер. Устраиваясь в ложбине, избегайте мест стока ливневой воды. Сами старайтесь тоже лишний раз не намокать.
  8. Отложите подальше все металлические предметы. Обычно все трекинговые палки, ледорубы, скальное железо и даже посуду складывают на кучу в 50-ти метрах от укрытия. Располагать это все следует выше по склону, в стороне от убежища (не прямо над ним).
  9. Где бы вы ни были (на открытом месте или в убежище), для большей безопасности следует принять следующее положение: присесть на корточки, голову опустить, руками обхватить ноги. Во избежание шагового разряда, ступни надо держать плотно сомкнутыми. Под ноги подложите сложенный в несколько раз туристический коврик или сухую веревку.
  10. Если есть риск сорваться (например, испугавшись молнии), зафиксируйте себя страховкой.
  11. Потушите костер (если таковой имеется). Ведь столб дыма это ионизированный газ, который является проводником электричества.

Действия при поражении электрическим током

При легких поражениях возможны обморок, нервное потрясение, головокружение, слабость, ожоги. При более тяжелых — обморок, шок, глухота, угнетение сердечной деятельности. Пострадавшего необходимо согреть, обеспечить полный покой, дать болеутоляющее и успокаивающее. При тяжелых поражениях возможны расстройство дыхания и прекращение сердечной деятельности. Необходима срочная сердечно-легочная реанимация и ввод средств, стимулирующих сердечные сокращения и дыхание.

(Использовались материалы с сайтов: http://www.outdoors.ru, http://www.outdoorukraine.com)