ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Тепловые электростанции (ТЭЦ, КЭС): разновидности, типы, принцип работы, топливо. Процессы в пароводяном контуре. Проточные электрические водонагреватели

Водоподготовка – это самый важный вопрос в теплоэнергетике. Вода является основой работы таких предприятий, поэтому ее качество и содержание тщательно контролируется. ТЭЦ очень важны для жизни города и жителей, без них невозможно существовать в холодный период года. От качества воды зависит деятельность ТЭЦ. Работа теплоэнергетики на сегодняшний день невозможна без водоподготовки. Вследствие парализации системы, возникает поломка оборудования, и как результат, плохо очищенная, некачественная вода, пар. Это может возникнуть из-за некачественной очистки и смягчения воды. Даже если постоянно удалять накипь, то это не убережет вас от перерасхода топливных материалов, формирования и распространения коррозии. Единственное и самое эффективное решение всех последующих проблем – это тщательная подготовка воды к использованию. При разработке системы для очистки нужно учитывать источник поступления воды.

Существует два типа нагрузки: тепловая и электрическая. При наличии тепловой нагрузки электрическая находится в подчинении первой. При электрической нагрузке ситуация обратная, она не находится в зависимости от второй и может работать без ее присутствия. Бывают ситуации, в которых совмещают оба вида нагрузки. При водоподготовке этот процесс полностью использует все тепло. Вывод можно сделать такой, что КПД на ТЭЦ значительно превышает его на КЭС. В процентном соотношении: 80 к 30. Еще один важный момент: тепло на большие расстояния передать практически невозможно. Именно поэтому ТЭЦ должна строиться вблизи или на территории города, который будет ею пользоваться.

Недостатки водоподготовки на ТЭЦ

Отрицательным моментом у процесса водоподготовки является образование нерастворимого осадка, образующегося при нагревании воды. Удаляется он очень сложно. Во время избавления от налета происходит остановка всего процесса, разбирается система, и только после этого можно качественно очистить труднодоступные места. Чем же вредит накипь? Она мешает теплопроводимости и, соответственно, возрастают затраты. Знайте, что даже при незначительном количестве налета, увеличится расход топлива.

Непрерывно устранять накипь невозможно, но делать это необходимо каждый месяц. Если этого не делать, то слой накипи будет постоянно увеличиваться. Соответственно, чистка оборудования потребует намного больше времени, усилий и материальных затрат. Чтобы не останавливать весь процесс и не нести убытки, необходимо регулярно следить за чистотой системы.

Признаки потребности в очистке:

  • будут действовать датчики, защищающие систему от перегревов;
  • блокируются теплообменники и котлы;
  • возникают взрывоопасные ситуации и свищи.

Все это – негативные последствия не удаленной вовремя накипи, которые приведут к поломкам и убыткам. В течении короткого времени вы можете потерять оборудование, которое стоит немалых денег. Очистка от накипи несет за собой ухудшение качества поверхности. Водоподготовка не устраняет накипь , это можете сделать только вы с использованием специального оборудования. При поврежденных и деформированных поверхностях накипь в дальнейшем образуется быстрее, также появляется коррозийный налет.

Водоподготовка на мини теплоэлектроцентралях

Подготовка питьевой воды включает в себя массу процессов. Перед началом водоподготовки следует провести тщательный анализ химического состава. Что же он из себя представляет? Химический анализ показывает количество жидкости, нуждающееся в ежедневной очистке. Указывает на те примеси, которые должны быть ликвидированы первыми. Подготовка воды на мини теплоэлектроцентралях не может быть осуществлена в полном объеме без такой процедуры. Жесткость воды – немаловажный показатель, который обязательно нужно определять. Многие проблемы состояния воды связаны с ее жесткостью и наличием отложений железа, солей, кремния.

Большой проблемой, с которой сталкивается каждая ТЭЦ, является присутствие примесей в воде. К ним можно отнести калиевые и магниевые соли, железо.

Главной задачей ТЭЦ является обеспечение жилых объектов населенного пункта нагретой водой и отоплением. Подготовка воды на таких предприятиях подразумевает использование смягчителей, дополнительных фильтрующих систем. Каждый этап очистки включает прохождение воды через фильтры, без них процесс невозможен.

Этапы водоочистки:

  1. Первый этап – осветление. В первую очередь вода осветляется, так как она поступает в систему мини ТЭЦ очень грязная. На этом этапе находят применение отстойники и механические фильтры. Принцип работы отстойников в том, что твердые примеси опускаются книзу. Фильтры состоят из нержавеющих решеток и имеют разные размеры. Первыми улавливаются крупные примеси, далее идут решетки среднего размера. Последними улавливаются самые мелкие примеси. Также важным является применение коагулянтов и флокулянтов, с помощью которых уничтожаются разного рода бактерии. Благодаря промывке чистой водой такие фильтры могут быть готовы к следующему использованию.
  2. Второй этап – это дезинфекция и обеззараживание воды. На данной стадии применяется ультрафиолетовая лампа, обеспечивающая полное облучение всего объема воды. Благодаря ультрафиолету гибнут все болезнетворные микроорганизмы. Второй этап также включает в себя дезинфекцию, в процессе которой используют хлорку или же безвредный озон.
  3. Третий этап – смягчение воды. Для него характерно применение в домашних условиях ионообменных систем, электромагнитных смягчителей. Каждый имеет свои достоинства и недостатки. Популярным является реагентное отстаивание, недостатком которого является формирование отложений. Эти нерастворимые примеси в дальнейшем очень сложно удалить.
  4. Четвертый этап – обессоливание воды. На этом этапе применяются анионные фильтры: декарбонизаторы, электродиадизаторы, обратный осмос и нанофильтрация. Процесс обессоливания возможен любым из вышеперечисленных стандартных способов.
  5. Пятый этап – это деаэрация. Это обязательный этап, который следует после тонкой очистки. Системы для очистки от газовых примесей бывают вакуумного типа, а также атмосферные и термические. В результате действия деаэраторов происходит устранение растворенных газов.

Пожалуй, это все самые важные и нужные процессы, которые проводятся для подпиточной воды. Далее следуют общие процессы для подготовки системы и ее отдельных компонентов. После всего вышеперечисленного следует продувка котла, в ходе которой используются промывные фильтры. По окончанию водоподготовка мини ТЭЦ включает промывку пара. В ходе этого процесса используются химические реагенты, обессоливающие воды. Они достаточно разнообразны.

В Европе водоподготовка на мини ТЭЦ нашла очень широкое применение. Благодаря качественному проведению этого процесса увеличивается коэффициент полезного действия. Для лучшего эффекта необходимо комбинировать традиционные, проверенные методы очистки и новые, современные. Только тогда можно достичь высокого результата и качественной водоподготовки системы. При грамотном использовании и постоянном усовершенствовании система мини ТЭЦ будет служить долго и качественно, а главное без перебоев и поломок. Не меняя элементов, и без ремонтов срок эксплуатации от тридцати до пятидесяти лет.

Системы водоподготовки для ТЭЦ

Еще некоторая важная информация, которую хотелось бы донести до читателя по поводу системы водоподготовки на ТЭЦ и их водоподготовительных установках. В данном процессе используются разные виды фильтров, важно ответственно отнестись к его выбору и использовать подходящий. Зачастую применяются несколько разных фильтров, которые последовательно соединены. Это делается для того, чтобы стадии смягчения воды и удаления из нее солей, прошли хорошо и эффективно. Применение ионообменной установки чаще всего осуществляется при очистке воды с высокой жесткостью. Визуально он имеет вид высокого цилиндрического бака и часто используется в промышленности. В состав такого фильтра входит еще один, но уже меньшего размера, он называется баком регенерации. Так как работа ТЭЦ беспрерывная, установка с ионообменным механизмом является многоступенчатой и имеет в своем составе до четырех разных фильтров. Система оборудована контроллером и одним блоком управления. Любой используемый фильтр оснащен личным регенерационным баком.

Задачей контролера является отслеживать количество воды, прошедшее сквозь систему. Также он контролирует объем воды, очищенный каждым фильтром, регистрирует период очистки, объем работы и ее скорость за определенное время. Контроллер передает сигнал далее по установке. Вода с высокой жесткостью следует на другие фильтры, а использованный картридж восстанавливают для последующего использования. Последний вынимается и переносится в бак для регенерации.

Схема водоподготовки на ТЭЦ

Основой ионообменного картриджа является смола. Ее обогащают несильным натрием. Когда вода вступает в контакт со смолой, обогащенной натрием, происходят трансформации и перевоплощения. Натрий замещается сильными жесткими солями. Со временем картридж наполняется солями, так и происходит процесс восстановления. Он переносится в регенерационный бак, где расположены соли. Раствор, в состав которого входит соль, очень насыщен (≈ 10%). Именно благодаря такому высокому содержанию солей жесткость устраняется из съемного элемента. После процесса промывки картридж снова наполнен натрием и готов к использованию. Отходы с высоким содержанием солей повторно очищают и только после этого могут быть утилизированы. Это является одним из недостатков подобных установок, так как требует значительных материальных затрат. Плюс же в том, что скорость очистки воды выше, чем у других подобных установок.

Смягчению воды нужно уделять особое внимание. Если подготовку воды сделать не качественно и сэкономить, то можно потерять намного больше и получить затраты несоизмеримые с экономией на водоподготовке.

Возник вопрос подоподготовки на ТЭЦ!? Не знаете куда обращаться?


Аннотация

Пояснительная записка дипломного проекта на тему « Реконструкция бойлерных установок ОТЭЦ-1 с применением пластинчатых подогревателей» содержит 114 страниц, в том числе 6 рисунков, 30 таблиц, 15 источников. Графическая часть выполнена на 6 листах формата А1.

В дипломном проекте разработана реконструкция бойлерной установки турбоагрегата № 9 ОТЭЦ-1 с заменой кожухотрубчатых теплообменных аппаратов на пластинчатые.

В пояснительной записке произведён конструкторский расчёт и выбор пластинчатых бойлеров, рассчитаны тепловые потери с поверхности изоляции и толщина изоляции. Для бойлеров применена более эффективная теплоизоляция из пенополиуретана.

Также выполнен гидравлический расчёт трубопроводов и выбор насосных агрегатов и арматуры.

По результатам расчёта произведён сравнительный анализ, показывающий преимущества пластинчатых бойлеров перед кожухотрубчатыми. После реконструкции бойлерная установка потребляет меньше пара и электроэнергии, за счёт чего предприятие экономит топливо или получает прибыль, продавая сэкономленную электроэнергию.

В электрической части произведён выбор двигателей к насосам и выбор кабелей для их подключения.

Также в пояснительной записке представлен расчет экономического эффекта от реконструкции. Рассмотрены вопросы безопасности труда при работе с бойлерной установкой.

Введение

    Характеристика объекта проектирования

      Назначение, перечень основных узлов и принцип работы оборудования бойлерной установки

    Анализ и оценка эффективности работы бойлерной установки турбины № 9

    Предлагаемая реконструкция бойлерной установки

    Преимущества пластинчатых теплообменных аппаратов

    1. Конструкция пластинчатого теплообменного аппарата

3. Расчёт существующей и проектирование предлагаемой бойлерных установок

3.1Тепловой расчёт бойлеров

3.2 Гидравлический расчёт бойлеров

3.3 Разница в значениях гидравлических потерь для кожухотрубчатых и пластинчатых бойлеров

3.4Выбор пластинчатых бойлеров

3.5 Тепловая изоляция бойлеров

3.6 Гидравлический расчёт трубопроводов бойлеров

3.7Выбор толщины изоляции для трубопроводов бойлеров

3.8 Выбор сетевых насосов

3.9 Выбор арматуры

3.10 приборы автоматического регулирования

3.11Расчёт экономии тепловой энергии за счёт реконструкции бойлерной установки

3.12Сравнительная характеристика по результатам расчёта

4 Применение частотного привода на насосах подпитки теплосети....77

5 Электрическая часть

5.1 Расчёт расхода электроэнергии на перекачку теплоносителя сетевым насосом

5.2 Расчёт кабельной линии 3 кВ для подключения двигателей насосов к питающей сети

6. Расчёт технико-экономических показателей

6.1Динамика основных технико-экономических показателей деятельности базового проекта за 2004 – 2006 гг.

6.2 Расчёт суммы капитальных вложений в новый объект

6.3Расчёт изменения себестоимости тепловой энергии

6.4 Расчёт прироста прибыли за счёт реконструкции

6.5 Экономический эффект проекта

6.6 Динамика основных технико-экономических показателей проекта после реконструкции

7 Безопасность жизнедеятельности и охрана труда

7.1 Опасные и вредные факторы

7.2 Электробезопасность

7.3 Пожарная безопасность

7.4Инструкции по охране труда для персонала, обслуживающего бойлерную установку

Заключение.

Список использованных источников

Введение

Энергетикой называется система установок и устройств для преобразования первичных энергоресурсов в виды энергии, необходимые для народного хозяйства и населения, и передачи этой энергии от источников её производства до объектов использования.

Из всех видов вырабатываемой энергии наиболее широкое применение находят два вида – электрическая энергия и теплота низкого и среднего потенциалов, на выработку которых затрачивается в настоящее время более 55 % всех используемых первичных топливно-энергетических ресурсов страны.

Для организации рационального энергоснабжения страны особенно большое значение имеет теплофикация, являющаяся наиболее совершенным технологическим способом производства электрической и тепловой энергии. Комбинированная выработка тепловой и электрической энергии производится на теплоэлектроцентралях (ТЭЦ).

Теплофикационное оборудование ТЭЦ предназначено для подготовки теплоносителя к транспортировке по тепловой сети и для приёма использованного теплоносителя на ТЭЦ.

В водяных системах теплоснабжения основное теплофикационное оборудование ТЭЦ состоит из пароводяных подогревателей, сетевых насосов, деаэрационных устройств, аккумуляторов горячей воды и насосов подпитки теплосети. В совокупности это оборудование носит название подогревательной установки.

Пароводяной подогреватель – основной элемент подогревательной установки – представляет собой поверхностный рекуперативный теплообменный аппарат кожухотрубчатого типа. Он предназначен для подогрева сетевой воды, необходимой для нужд отопления и горячего водоснабжения, за счёт использования теплоты пара низкого давления, поступающего из отбора турбины.

В связи с истощением топливных ресурсов и ростом цен на них возникает проблема экономичного использования топлива. Эта проблема частично решается за счёт применения современного, более совершенного оборудования. В частности, при замене кожухотрубчатых подогревателей сетевой воды на пластинчатые, сокращается потребление пара подогревательной установкой, а, следовательно, снижается расход топлива на производство пара при одинаковых значениях его параметров.

Пластинчатый теплообменный аппарат – это аппарат поверхностного типа, теплопередающая поверхность которого образована из тонких штампованных гофрированных пластин. Его эффективность обусловлена более высоким, чем у кожухотрубчатого теплообменного аппарата, коэффициента теплопередачи. Кроме того, пластинчатый теплообменный аппарат обладает рядом преимуществ:

    компактность;

    простота обслуживания;

    надёжность.

    Характеристика объекта проектирования

      Назначение, перечень основных узлов и принцип работы оборудования бойлерной установки турбины № 9

Теплофикационные установки предназначены для снабжения потребителя теплом в виде горячей сетевой воды, с графиком теплосети 70/150 ˚С.

Подогревательная установка турбины № 9 включает в себя:

два основных бойлера № 1, № 2 типа ПСВ-500-3-23;

    один пиковый бойлер типа ПСВ-500-14-23;

    четыре сетевых насоса - № 8, № 9 типа 10НМКх2, № 21, № 22 типа КРНА-400/700/64М;

    два конденсатных насоса бойлеров №8, № 9 типа 8КСД-5х3;

    деаэратор подпитки теплосети ДС-300;

    два насоса подпитки теплосети от коллектора сырой воды типа 8К-12.

По характеру тепловой нагрузки подогреватели подразделяются на основные и пиковые. Пар на основной бойлер поступает из отбора турбины с давлением 1,2 ата, а на пиковый бойлер – с давлением 10-16 ата.

Каждый подогреватель представляет собой пароводяной вертикальный теплообменный аппарат с цельносварным корпусом. Трубный пучок состоит из прямых трубок диаметром 19 мм, выполненных из латуни марки Л-68, развальцованных с обеих сторон в трубных досках. Для жёсткости и прочности трубная система заключена в стальной каркас с перегородками. Перегородки направляют поток пара для лучшего омывания трубного пучка и являются промежуточными опорами для труб, предотвращая их вибрации. В месте выхода струи греющего пара на трубный пучок устанавливается пароотбойный лист для защиты трубок от динамического удара потока пара и распределения пара в межтрубном пространстве. Для получения больших скоростей воды подогреватели выполнены двухходовыми. Ходы образуются перегородкой в нижней камере. Перегородка делит трубный пучок на две части по числу ходов.

Сетевая вода через входной патрубок подаётся в одну из половин верхней водяной камеры, проходит половину трубок и поступает в нижнюю часть. По другой половине трубок вода поднимается вверх во вторую половину верхней водяной камеры, откуда через патрубок отвода сетевой воды поступает в сборный коллектор горячей воды. По ходу своего движения вода нагревается паром. Пар в свою очередь конденсируется, и конденсат отводится через отверстие в днище.

Для продувки парового пространства для удаления воздуха в нижней части корпуса имеются дренажные отверстия.

Сетевые насосы типа № 8, № 9 и № 21, № 22, включенные параллельно, обеспечивают циркуляцию сетевой воды в системе теплоснабжения. Технические характеристики сетевых насосов представлены в таблицах 1 и 2.

Конденсатные насосы бойлеров предназначены для перекачки конденсата из межтрубного пространства подогревателей в котельный агрегат. Технические характеристики конденсатных насосов представлены в таблице 3.

Параметр

Значение

Тип насоса

Двухступенчатый, центробежный, с односторонним всасом

Производительность, м 3 /ч

Напор, м вод. ст.

Подпор, мм вод.ст.

Число оборотов, об./мин.

Мощность электродвигателя, кВт


Таблица 1 – Технические характеристики сетевых насосов типа КРНА-

400/700/64М бойлерной установки турбины № 9

Таблица 2 – Технические характеристики сетевых насосов типа 10НМКх2 бойлерной установки турбины № 9.


Таблица 3 – Технические характеристики конденсатных насосов типа 8КСД-5х3

Насосы подпитки теплосети предназначены для введения в цикл подпиточной воды, которая покрывает потери сетевой воды. Технические характеристики подпиточных насосов представлены в таблице 4.

Предварительно химически очищенная подпиточная вода подвергается деаэрации. Деаэрация, то есть удаление коррозионно-активных газов (кислорода, углекислого газа), происходит в деаэраторе струйного типа ДС-300, производительность колонки которого составляет 300 т/ч, ёмкость аккумуляторных баков – 79 м 3 , давление пара – 1,2 ата, температура выходящей из деаэратора воды – 105 ˚С.Реконструкция деаэрационной установки 5.1 Деаэрационная установка... воду на теплопункты от бойлерных установок турбин №9, 10, 11 ... пластмассовыми и т.д.); звукопоглощение (применение материалов из минерального войлока, ...

  • Реконструкция Омской ТЭЦ

    Дипломная работа >> Строительство

    Выделены приоритетные направления по реконструкции ТЭЦ-3 применение экологически чистых ресурсосберегающих технологий... 4) увеличивает экономичность работы турбины. Автоматизация бойлерных установок включает в себя автоматическое регулирование, дистанционное...

  • Комплексный анализ итогов деятельности и состояния предприятия

    Курсовая работа >> Финансовые науки

    Систем электроснабжения: строительство, реконструкция и капитальный ремонт электрических... промышленных и отопительных котельных, бойлерных установок тепловых сетей, мазутонасосных сооружений... : монтаж сосудов без применения сварки и вальцовки элементов...

  • Повышение эффективности производственно-хозяйственной деятельности на предприятии (на примере ОАО "Смолевичский молочный завод")

    Дипломная работа >> Экономика

    Объем продукции, изготовленной с применением прогрессивных технологических процессов, р. ... химической промывки котлов, бойлерных установок . Снабжение холодом... всем направлениям совершенствования, реконструкции , технического перевооружения действующего...

  • Формы планирования и виды планов и их роль в обеспечении долговременного успеха предприятия (1)

    Реферат >> Менеджмент

    Заказана проектная документация на реконструкцию старого завода с технико... химическая промывка котлов, бойлерных установок . Снабжение холодом осуществляется... базы, рост профессионализма персонала, применение компьютерной техники, стимулирование разработчиков...

  • 1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

    На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

    Обозначения на схеме ТЭС:

    1. Топливное хозяйство;
    2. подготовка топлива;
    3. промежуточный пароперегреватель;
    4. часть высокого давления (ЧВД или ЦВД);
    5. часть низкого давления (ЧНД или ЦНД);
    6. электрический генератор;
    7. трансформатор собственных нужд;
    8. трансформатор связи;
    9. главное распределительное устройство;
    10. конденсатный насос;
    11. циркуляционный насос;
    12. источник водоснабжения (например, река);
    13. (ПНД);
    14. водоподготовительная установка (ВПУ);
    15. потребитель тепловой энергии;
    16. насос обратного конденсата;
    17. деаэратор;
    18. питательный насос;
    19. (ПВД);
    20. шлакозолоудаление;
    21. золоотвал;
    22. дымосос (ДС);
    23. дымовая труба;
    24. дутьевой вентилятов (ДВ);
    25. золоуловитель.

    Описание технологической схемы ТЭС:

    Обобщая все вышеописанное, получаем состав тепловой электростанции:

    • топливное хозяйство и система подготовки топлива;
    • котельная установка: совокупность самого котла и вспомогательного оборудования;
    • турбинная установка: паровая турбина и ее вспомогательное оборудование;
    • установка водоподготовки и конденсатоочистки;
    • система технического водоснабжения;
    • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
    • электротехническое оборудование и система управления электрооборудованием.

    Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

    Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

    Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

    Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

    При сжигании мазута и газа золоуловители не устанавливаются.

    При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

    Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

    В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

    На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

    Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

    Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

    Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

    Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

    На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

    На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

    Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

    Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

    Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.

    Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

    Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

    И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

    Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

    Принцип работы

    Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.


    Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

    Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

    Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО 2 , которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

    Теплоснабжение

    Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

    Как работают ТЭС на газе

    По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

    Новые технологии сжигания угля

    КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

    Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.


    Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО 2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

    Метод «oxyfuel capture»

    Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

    Метод «pre-combustion»

    Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO 2 – оксид серы. Далее происходит удаление СО 2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

    Пятерка самых мощных теплоэлектростанций мира

    Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.


    Интерактивное приложение «Как работает ТЭЦ»

    На картинке слева - электростанция « Мосэнерго» , где вырабатывается электроэнергия и тепло для Москвы и области. В качестве топлива используется самое экологически чистое топливо - природный газ. На ТЭЦ газ поступает по газопроводу в паровой котел. В котле газ сгорает и нагревает воду.

    Чтобы газ лучше горел, в котлах установлены тягодутьевые механизмы. В котел подается воздух, который служит окислителем в процессе сгорания газа. Для снижения уровня шума механизмы снабжены шумоглушителями. Образовавшиеся при горении топлива дымовые газы отводятся в дымовую трубу и рассеиваются в атмосфере.

    Раскаленный газ устремляется по газоходу и нагревает воду, проходящую по специальным трубкам котла. При нагревании вода превращается в перегретый пар, который поступает в паровую турбину. Пар поступает внутрь турбины и начинает вращать лопатки турбины, которые связаны с ротором генератора. Энергия пара превращается в механическую энергию. В генераторе механическая энергия переходит в электрическую, ротор продолжает вращаться, создавая в обмотках статора переменный электрический ток.

    Через повышающий трансформатор и понижающую трансформаторную подстанцию электроэнергия по линиям электропередач поступает потребителям. Отработавший в турбине пар направляется в конденсатор, где превращается в воду и возвращается в котел. На ТЭЦ вода движется по кругу. Градирни предназначены для охлаждения воды. На ТЭЦ используются вентиляторные и башенные градирни. Вода в градирнях охлаждается атмосферным воздухом. В результате выделяется пар, который мы и видим над градирней в виде облаков. Вода в градирнях под напором поднимается вверх и водопадом падает вниз в аванкамеру, откуда поступает обратно на ТЭЦ. Для снижения капельного уноса градирни оснащены водоуловителями.

    Водоснабжение осуществляется от Москвы-реки. В здании химводоочистки вода очищается от механических примесей и поступает на группы фильтров. На одних она подготавливается до уровня очищенной воды для подпитки теплосети, на других - до уровня обессоленной воды и идет на подпитку энергоблоков.

    Цикл, используемый для горячего водоснабжения и теплофикации, также замкнутый. Часть пара из паровой турбины направляется в водонагреватели. Далее горячая вода направляется в тепловые пункты, где происходит теплообмен с водой, поступающей из домов.

    Высококлассные специалисты « Мосэнерго» круглосуточно поддерживают процесс производства, обеспечивая огромный мегаполис электроэнергией и теплом.

    Как работает парогазовый энергоблок