ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Химическая очистка воды в котельной. Водоподготовка и водохимический режим котельной. Описание разработанной ФСА

ВОДОПОДГОТОВКА И ВОДОХИМИЧЕСКИЙ РЕЖИМ КОТЕЛЬНОЙ

5.1.Водоподготовка имеет большое значение для безопасной и экономичной работы котельных установок. При неудовлетворительной водоподготовке на поверхности нагрева котлов, тепловых сетей и водоподогревателей откладываются твердые отложения, и происходит коррозия поверхности нагрева.

5.2.Водоподготовка подпиточной воды включает в себя умягчение жесткой воды в натри-катионитовых фильтрах и удаление агрессивных газов, кислорода и свободной углекислоты, в вакуумных деаэраторах.

5.3.Вода из городского водопровода мимо или через повысительные насосы холодной воды поступает на охладитель рабочей жидкости. Затем на подогреватель сырой воды (I ступень ХВО) /12/. Нагревается до температуры не выше 40 С и поступает в натрий-катионитовый фильтр /1/. Повышение воды выше 40 С вызывает коксование сульфоугля, что снижает его обменные способности. Умягченная вода после фильтра /1/ поступает на подогреватель химочищенной воды II ступени /13/, где нагревается до температуры 70-80 С, а затем подается на вакуумные деаэраторы /6,7/. Де аэрированная умягченная вода свободно сливается в баки подпиточной воды /10/. Смотри схему №5.

5.4.Натрий-катионитовый фильтр представляет собой вертикальные цилиндрические напорные баки, работающие с давлением выше атмосферного. Нижняя часть фильтра заполнена слоем бетона, на котором расположено нижнее дренажное устройство.

Дренажное устройство предназначено для равномерного распределения поступающей воды по всей площади фильтра. Оно состоит из коллектора с системой дренажных трубок со щелями, щели которых меньше диаметра наименьших зерен сульфоугля /катионита/.

Выше дренажного устройства располагается катионит /сульфоуголь/ высотой 2,2м.

В верхней части фильтра расположено распределительное устройство для воды и солевого раствора. Оно предназначено для равномерного распределения воды и солевого раствора по всей поверхности сульфоугля.

Фильтр имеет два лаза: верхний – для загрузки катионита и для доступа во внутрь фильтра; и нижний – для ревизии нижней дренажной системы.

Катионитовые фильтры обвязаны трубопроводами с арматурой и измерительными приборами – расходомерами, манометрами, термометрами, устройствами для отбора проб воды.

5.5.К вспомогательному оборудованию водоподготовки относится устройство для подготовки раствора соли, необходимого для регенерации фильтра, устройство ""мокрого хранения"" соли /14/, перекачивающие солевые насосы /15/, бак мерник /3/. бак подсоленной воды /8/, солерастворитель /4/.

5.5.1.Установка ""мокрого хранения"" соли представляет собой четыре железобетонных бака-хранилища, рассчитанных на трех-четырех месячную потребность соли.

Сухая соль автотранспортом засыпается в ямы. В верхней части ям имеется коллектор с отверстиями для равномерного размыва соли холодной/1/ или горячей водой /2/подаваемой из котельной. Смотри схему №5.

На дне ямы ""мокрого хранения"" соли имеется всасывающая труба (в коробе со щебнем – для фильтрации солевого раствора), по которой раствор насосом /5/ подается в бак мерник /3/ котельной.

5.5.2.Всасывающие трубы из ям ""мокрого хранения"" соли входят в рядом стоящую насосную, где расположены два насоса /5/ для перекачки солевого раствора и трубопроводы с запорной арматурой обвязывающие солевые ямы. Обвязка солевых ям позволяет перекачать солевой раствор из любой ямы в любую, а так же подавать горячую и холодную воду в ямы, как через размывочный коллектор, так и через заборную трубу.

5.5.3.Из ямы ""мокрого хранения"" соли солевой раствор перекачивающими насосами подается в бак мерник. В баке мернике насыщенный раствор разбавляется до 7-10% концентрации и подается в регенерируемый фильтр солевым насосом /15/.

5.5.4.Солевой раствор для регенерации фильтра может быть приготовлен и в проточном солерастворителе /4/. Соль ""сухого хранения"" засыпается в солерастворитель и пропускают через него холодную воду. Полученный солевой раствор может быть подан как непосредственно в фильтр, так и на бак мерник. Этот способ приготовления солевого раствора применяется при выходе из строя перекачивающих насосов /5/ или солевого насоса /15/.

5.6.Цикл работы фильтра состоит из операций взрыхления, регенерации, контакта, отмывки, умягчения.

5.6.1.Цель взрыхления – устранить уплотнения слежавшейся массы катионита, для обеспечения более свободного доступа регенерационного раствора к зернам катионита. Взрыхление производится отмывочной водой подаваемый насосом взрыхления /9/ из бака подсоленной воды /8/. В случае отсутствия отмывочной воды, взрыхление производится холодной водой.

При взрыхлении сначала открывается задвижка на линии подвода взрыхляющей воды, а затем задвижку на линии сброса воды в верхней части фильтра в канализацию. Взрыхление должно производится до тех пор, пока вода, отходящая от фильтра вода, не станет прозрачной. При взрыхлении не допускается полное опорожнение промывочного бака, во избежание засоса воздуха в фильтр.

5.6.2.Регенерация катионита в фильтре производится раствором соли, приготовленным в баке мернике. Раствор соли 7-10% концентрации подается солевым насосом в фильтр, он проходит сверху вниз сквозь слой катионита и выходит в канализацию. При помощи дренажной задвижки на фильтре устанавливаем скорость подачи раствора 3-4м3/час. В процессе регенерации необходимо следить, чтобы в фильтре был все время подпор жидкости. После пропуска раствора соли, закрывается дренаж, фильтр ставится на контакт.

5.6.3.Контакт катионита с раствором соли длится 5-10 минут. Он необходим для дополнительного обменного процесса между катионами натрия и солями жесткости. При увеличении времени контакта свыше 15 минут эффект регенерации возрастает незначительно.

5.6.4.После окончания контакта производится отмывка сульфоугля от регенерационного раствора и продуктов регенерации. Для отмывки фильтра холодную воду пропускаем сквозь катионит сверху вниз 25-45 минут. Сбрасываем воду в канализацию. Сброс производится до тех пор, пока отмывочная вода станет соленой на вкус. Тогда фильтр переключается на отмывку в промывочный бак. Отмывка в бак заканчивается тогда, когда отмывочная вода становится прозрачной и ее общая жесткость не превышает 200мкг.экв/кг, а концентрация хлоридов превышает их содержание в исходной воде не более чем на 30мг/л.

Если бак отмывочной воды заполнится раньше, чем отмоется фильтр, отмывка продолжается в канализацию.

Катионитовый фильтр, поставленный после регенерации в резерв, в избежания пептизации катионита отмывается от регенерационного раствора только частично. В этом случае отмывка в бак не ведется, и фильтр оставляется в резерве со слабым регенерационным раствором. Окончание отмывки и отмывка на бак производится непосредственно перед включением фильтра в работу.

5.6.5.Закончив отмывку, фильтр включается в работу. Умягченная вода поступает через задвижку на входе в верхнее распределительное устройство, проходит через фильтр, через катионит и далее через дренажную систему, через задвижку на выходе отводится на подогреватель II ступени ХВО /13/.

При включении фильтра в работу необходимо еще раз произвести химический контроль выходящей воды, которая должна отвечать следующим показателям: жесткость не более 200мкг.экв/л.; хлориды – 30мг/л больше, чем их содержание в исходной воде.

Во время умягчения следует периодически /один-два раза в смену/, открывать воздушный вентиль для выпуска скопившегося в фильтре воздуха.

По достижении остаточной жесткости в умягченной воде 200мкг.экв/л. фильтр отключают и повторяют цикл операций.

5.6.6.Для подготовки питательной воды паровых котлов ДЕ-10-14ГМ применяется двухступенчатое умягчение. При двухступенчатом умягчении: исходную воду вначале умягчают в основных катионитовых фильтрах (фильтры I ступени) /1/ до остаточной жесткости 1000мкг.экв/л., а затем доумягчают в катионитовых фильтрах II ступени /2/ до конечной жесткости 20мкг.экв/л.

5.7.Химически очищенная вода после натрий-катионитовых фильтров I ступени /1/ поступает на подогреватель ХВО II ступени /13/, где нагревается до температуры 70-80 С. На вход подогревателя ХВО II ступени поступает еще и подпиточная вода после подпиточных насосов /11,17/ на повторную деаэрацию. Ее количество регулируется в ручную.

5.7.1.Греюшая вода поступает сразу на подогреватель ХВО II ступени, а затем последовательно на подогреватель I ступени и на регулятор ""Температуры ХВО"". В случае работы без подогревателя ХВО I ступени, теплоноситель после подогревателя II ступени ХВО поступает на регулятор ""Температуры ХВО"" через байпас.

5.7.2.Регулятор ""Температуры ХВО"" регулирует температуру на выходе воды с теплообменника ХВО II ступени. Температуру на выходе воды с подогревателя ХВО I ступени, регулируется в ручную. В случае ее повышения до 38 С в операторской срабатывает звуковая и световая сигнализация.

5.7.3.Греющая и нагреваемая вода на подогревателе ХВО II ступени подключены противотоком, а на подогревателе ХВО I ступени – прямотоком.

5.7.4.Для аварийной подпитки тепловых сетей напрямую, минуя деаэрацию необходимо:

Закрыть задвижку на входе в подогреватель ХВО II ступени

Открыть перемычку между трубопроводами (выход натрий-катионитовых фильтров и нагнетательный коллектор подпиточных насосов /11,17/).

Эта линия подпитывает тепловые сети химически очищенной водой давлением исходной воды, без подпиточных насосов (пуск после остановки со сливом воды, выход из строя подпиточного насоса).

5.8.После подогревателя ХВО II ступени химически очищенная вода поступает на вакуумную деаэрационную установку подпитки. Она включает в себя вакуумные деаэрационные колонки производительностью 25 т/час /7/, 50 т/час/6, охладитель выпара колонки /16/, бак деаэрированной воды /10/, эжектора – общие с колонками ГВС. Смотри схему №15. Одна из деаэраторных колонок подпитки находится в работе, а другая в резерве, в зависимости от нагрузки на узел ХВО.

5.9.Режимная карта натрий-катионитовых фильтров I и II ступеней котельной по ул. Товарищеская

№ пп Показатели Ед. изм. Значение
Фильтры I ступени.
Диаметр фильтра мм
Катионит Сульфоуголь
Высота загрузки мм
Площадь фильтра м2 3,14
Объем катионита м3 6,9
Рабочая обменная способность гр-экв/м3
Умягчение
мкг-экв/ кг 1000-200
мкг-экв/ кг 1500-200
9 Среднее количество воды за фильтроцикл Ер. * Gк. G ум.= Жисх. - Жум. м3
Взрыхление
Время взрыхления мин 20-30
Регенерация
кг
кг
Процент содержания соли в растворе %
м3 4,14
Скорость пропуска раствора соли м3/ч 3-5
Время пропуска солевого раствора мин.
Время контакта мин.
Фильтры II ступени.
Диаметр фильтра мм
Катионит Сульфоуголь
Высота загрузки мм
Площадь фильтра м2 0,23
Объем катионита м3 0,23
Рабочая обменная способность г-экв/м3
Жесткость воды при включении в работу мкг-экв/кг 15-20
Жесткость при срабатывании фильтра мкг-экв/кг 15-20
Среднее количество воды за фильтроцикл м3
Взрыхление
Время взрыхления мин. 10-15
Регенерация
Удельный расход соли на 1м3 сульфоугля кг
Расход технической соли на регенерацию кг
Процент соли в растворе %
Расход раствора соли на регенерацию м3 0,138
Скорость пропуска соли м3/час 3-5
Время контакта мин. 10-15
Экспликация оборудования ХВО
№ пп Наименование оборудования Характеристика оборудования Кол-во
Натрий катионитовый фильтрI D=2000мм
2 Натрий катионитовый фильтрII D=1000мм
Бак-мерник раствора соли V=3 м3
Солерастворитель С-0.2-0.5 D=1000мм
Насос перекачки раствора соли К-20-30 G=20м3/ч, Н=30м.в.ст, n=2900об/мин,N=4кВт
Вакуумный деаэратор ВД-50 G=50м3/час
Вакуумный деаэратор ВД-25 G=25м3/час
Бак промывки фильтров ОСТ-34-42-395-77 V=30 м3
Насос промывки фильтра К-45-30 G=45м3/ч, Н=30м.в.ст, n=2900об/мин,N=5кВт
Бак подпиточной воды БП-200 V=200 м3
Насос подпиточной воды К-90-35 G=90м3/ч, Н=35м.в.ст, n=2900об/м, N=15кВт
Подогреватель холодной воды 3-12-ОСТ.34-588-68 Q=1,1Гкал/ч,tmax=40СGт/н=10т/ч,F=30м2.
Подогреватель хим.очищенной воды 3-13-ОСТ.34-588-68 Q=2,2Гкал/ч,tmax=81С Gт/н=50т/ч,F=60м2
Солевая яма
Насос раствора соли 8/15ДСУ4 G=8м3/ч, Н=15м.вюст, n=2900об/м,N=3кВт
Охладитель выпари ОВВ-8 F=8м2
Насос подпиточной воды К-20-50 G=20м3/ч, Н=50м.в.ст, n=2900об/м, N=15кВт

Водоподготовка для котельных установок – обязательный процесс для каждого производства рассматриваемой категории. Системы водоподготовки применяется в целях предотвращения образования отложений на рабочих элементах котлов. При этом именно качественная водоподготовка котлов является главной гарантией безаварийной и высокоэффективной работы котельного оборудования в течение отопительного сезона.

Водоподготовка представляет собой процесс подачи жидкости в котельную станцию после прохождения предварительного умягчения. При этом очистка производится за счет применения блочных фильтров многоступенчатого типа. Вода проходит подготовку перед использованием в судовых, а также водогрейных котлах.

Оборудование, применяемое для умягчения, очень эффективно смягчает жесткую воду. Далее в ходе очистки из жесткой воды будет удалена значительная часть растворенных в ней загрязняющих частиц. Поскольку главной причиной высокой жесткости рабочей среды является именно повышенная концентрация солей, грубодисперсных механических примесей, умягчение решает проблему действительно эффективно.

Первый этап водоподготовки котельных предполагает механическую фильтрацию. Второй уже более сложный и трудоемкий – требует предварительного удаления минеральных солей, растворенных в рабочей среде. Умягчение в данном случае производится с помощью современного метода тонкой очистки, имеющего высокую эффективность. Он предполагает применение мембранных технологий. Смягчители не используются ввиду применения ультрафильтрационных методов, а также обратного осмоса.

Водоподготовка: предварительные расчеты системы

Водоподготовка, многоступенчатая очистка, умягчение водогрейных систем осуществляет только после выполнения предварительных расчетов. Эти расчеты включают в себя сбор и систематизацию систем данных о протяженности водонагревательных систем, уровне их засоренности. Водоподготовка котельных с последующей очисткой системы транспортировки теплоносителей состоит из нескольких этапов:

  1. Удаление взвесей, органики, коллоидов – или начальная очистка.
  2. Умягчение – деминерализация.
  3. Аннигиляция СО2 и О2 (агрессивные газы).
  4. Коррекционная постобработка.
  5. Расчет параметров следующей очистки.

Во всех системах теплоснабжения, включая те, в которых применяется ультрасовременное оборудование и постоянно производится точный расчет рабочих параметров, возможны непланомерные утечки теплопередающих сред. На котельных станциях, оборудованных чугунными и стальными котлами, утечки компенсируются подпилочной жидкостью. Такая вода обязательно проходит предварительную обработку с применением смягчителей. Смягчители располагаются в установках химической очистки воды.

Большая часть котельных, отвечающих за теплоснабжение объектов разного назначения, получает воду из водопроводных систем, которую дополнительной очистке подвергать не нужно – дегазации и смягчения оказывается достаточно. Все дело в том, что в состав водопроводной жидкости входит большое количество газов и солей, которые нужно убрать, поскольку они оседают в качестве осадка и начинают скапливаться на рабочих поверхностях котельных установок. С течением времени объем слоистых отложений увеличивается, и коэффициент теплоотдачи падает. В конечном счете это приводит к перерасходу топлива. Опасность осадков, которые образуют накипь, состоит в увеличении рисков аварий – это объясняется постоянным перегревом стенок котла. При этом агрессивные соединения, имеющие вид газообразных примесей, регулярно вступают в контакт со стенками котла, вызывая коррозийные процессы. Чугунные устройства коррозии не боятся, а вот для стальных они представляют опасность.

Чтобы на стенках котлов и основных рабочих элементах не появлялась накипь, нужно использовать воду оптимальной степени жесткости, а также подвергать ее дегазации, смягчать. Дегазация осуществляется путем вакуумдеаэрации. Умягчитель жидкости, используемой в котлах, имеет несколько разновидностей – и каждая из них имеет свои характеристики, особенности. Засыпка смягчающего вещества должна производиться заблаговременно. Жидкость, образующаяся на выходе устройств с химическим способом обработки, для питья является не пригодной. Самыми долговечными являются смягчители ионообменного типа, но они и стоят немало. Магнитные устройства универсальны, а самыми производительными являются установки, работающие на электромагнитном генераторе.

Популярные способы водоподготовки котельных

На сегодняшний день используются разные способы водоподготовки котельных станций, каждый из которых имеет свои особенности и преимущества. Назовем основные:

  • Осаждение.
  • Коагуляция.
  • Адсорбация.
  • Флокуляция.
  • Обратный осмос.
  • Безреагентная водоподготовка.
  • Ионобмен.

В процессе осаждения взвешенные в воде твердые частички оседают на фильтрующих поверхностях и на внутренних элементах устройства. Фильтры используются магнитные, съемные. Сам процесс осаждения протекает за счет использования специальных реагентов – данный способ является оптимальным для выведения взвешенных частиц и коллоидных соединения из воды. Он простой, быстрый и эффективный.

Обратный осмос предполагает применение специальной мембраны. Она обеспечивает эффективную фильтрацию находящихся в жидкости примесей (органика). Также мембрана неплохо справляется с задачей фильтрации бактерий и вирусов. При этом обратный осмос очищает воду слишком тщательно – и ее состав обедняется. Стоимость мембраны высокая, кроме того, она является не слишком надежной и часто выходит из строя в результате контакта с большими объемами загрязняющих веществ. Скорость очистки низкая, поскольку мембранный компонент является полупроницаемым.

При ионном обмене используется специальная смола, помещаемая в картридж. Смола состоит из ионов натрия, подготовленных соответствующим образом для последующего обмена. Умягчающий фильтр пропускает через себя жесткую воду и смягчает ее. Главные недостатки способа – высокая стоимость картриджей и потребность в их частой замене.

Химические реагенты – это специальные окислители. Они представлены преимущественно озоном, кислородом, хлорамином, марганцовкой и перекисью водорода. Эти элементы являются активными и сохраняют стойкость даже после того, как полностью растворятся в жидкости. Перманганат калия играет роль восстановителя, а перекись водорода слишком токсичная, поэтому используется в небольших количествах. Озон экологичный дорогой окислитель.

Безреагентные методы смягчения предполагают использование специальных электромагнитных, магнитных и ультразвуковых приборов. Очистка в данном случае основывается на принципе интенсивного электромагнитного, волнового или ультразвукового воздействия. Безреагентные устройства активно используются в теплосистемах жилых частных домов и квартир.

Оборудование, применяемое для водоподготовки котельных

Оборудование, которое используется для водоподготовки на котельных станциях – это различные установки и фильтры. Рассмотрим основные категории:

  1. Загрузочные баллонные устройства являются самыми распространенными и идеально подходят для частных домов. Принцип работы – механическая фильтрация. Некоторые модели также могут использоваться для удаления железистых примесей из жидкостей. Стоят баллоны сравнительно недорого.
  2. Мембранные умягчители могут иметь разные параметры и рабочие показатели. Современные модели снабжаются специальным автоматическим блоком, что обеспечивает максимальный уровень удобства применения и управления прибором. Мембранный умягчитель – лучшая защита от накипи.
  3. Ультрафиолетовые обеззараживатели максимально быстро удаляют соли тяжелых металлов, вредные бактерии.

Реже, но тоже используются ртутные бактерицидные лампы, предназначенные для установки в системах низкого давления. Ртутные лампы долговечны и имеют хороший КПД.

Законодательные нормы и требования

Нормы проектирования водоподготовки систем котельных определяются на законодательном уровне. Ознакомиться с ними можно в СНиП II-35-76 (актуализированный документ СП СНиП 89.13330.2012) «Котельные установки». В соответствие с положениями названного документа, режим работы котельной станции должен обеспечивать нормальную работу пароводяного тракта, котлов, теплового оборудования и тепловых сетей без отложений накипи и появления коррозии на внутренних рабочих поверхностях. Состав системы водоподготовки определяется уровнем качества исходной воды, действующими требованиями к очищенной воде, общей производительностью установки. Нормы очищенной воды зависят от ее назначения и прописываются в соответствующих документах. Требования к очищенной воде зависят от ее назначения и определяются нормативными документами.

Кроме нормативной документации, в ходе водоподготовки следует учитывать рекомендации производителя оборудования, которые прописываются в руководстве пользователя. Параметры сетевой ГВС воды устанавливаются и проверяются СанПиНом.

Основные ошибки водоподготовки

Рассмотрим типичные ошибки подготовки воды для котельных:

  • неэффективность системы предварительной очистки или ее полное отсутствие;
  • неправильный расчет установок деминерализации/умягчения (он должен производиться в индивидуальном порядке);
  • отсутствие или некорректная отладка деаэраторов;
  • плохая коррекционная обработка жидкости.

Дело в том, что главными источниками воды для котельных станций являются скважины, водоемы и городские водопроводы. Та же водопроводная вода поступает на установку неподготовленной. Если она хлорированная, дехлорирование обязательно, поскольку хлор разрушает мембраны обратного осмоса и аниониты (составляющие части ряда станций водоподготовки). В воде, которую получают из грунтовых источников, которое вызывает преждевременную коррозию труб, способствует зарастанию мембран характерным осадком и, соответственно, появлению потребности в проведении частых кислотных промывок (а они уменьшают срок службы мембран). Взвеси и органика – главные причины образования отложений на поверхностях нагрева, в трубах, коррозии. Также органические вещества вызывают обрастание мембран обратного осмоса, деградацию и уменьшают обменную емкость аонитов.

Качественная водоподготовка – почему это важно?

Водоподготовка для котельной, выполненная по всем правилам, избавит вас от ряда неприятностей, финансовых потерь, улучшит эффективность оборудования. Срок службы котельных станций и их оборудования во многом зависит именно от свойств пара и воды. Низкое качество подпитывающей, питательной воды, плохой контроль, отсутствие химической коррекции жидкостей приводит к образованию накипи, началу кислородных, углекислотных коррозионных процессов. В итоге падает теплопередача, оборудование забивается, уменьшается срок его службы, падает рентабельность котельной, возрастает частота простоев.

Наиболее опасной для котельных является жидкость с высокой концентрацией загрязнителей вроде солей , магния. Они оседают на внутренних рабочих деталях и образуют толстый, не удаляемый слой накипи. В итоге страдает теплопроводность металлов, и для обеспечения нормальной производительности станции приходится расходовать намного больше энергии. Единственным методом предотвращения образования накипи является многоступенчатая качественная очистка воды от примесей.

Для справки. Классификация котлов

Существующие сегодня котлы делятся на несколько категорий:

  1. Паровые – для получения пара.
  2. Водогрейные – для нагрева под давлением.
  3. Пароводогрейные – для нагрева воды и получения пара.

В зависимости от используемого способа получения энергии устройства бывают:

  • энерготехнологическими – они служат для переработки технологических материалов (то есть топлива);
  • утилизационными – в них используется тепло от отходящих газов;
  • электрическими – данные устройства для получения пара или нагрева воды используют электрическую энергию.

Типы циркуляции – естественная и принудительная. С учетом числа циркуляционных циклов, котлы бывают прямоточными (с однократными движениями рабочих сред) и комбинированными (с многократными циркуляционными процессами).

В зависимости от направления движения рабочей среды по отношении к поверхности нагрева выделяются:

  • Котлы газотрубного типа – в них конечные продукты, образующиеся в результате сгорания топлива, движутся внутри поверхностей нагрева в трубах, а смесь пара с водой и сама вода – снаружи.
  • Водотрубные котлы – в них все происходит с точностью наоборот.

Тип котла обязательно нужно учитывать при определении требований к очищаемой и смягчаемой воде.

Терминология. Виды воды

Вода, применяемая в котлах, в зависимости от конкретного технологического участка, имеет различные названия, которые закрепляются в соответствующих нормативных документах. Среди них:

  • Сырая вода – ее получают из источника водоснабжения, то есть это жидкость без предварительной обработки.
  • Питательная вода – жидкость, которая находится на входе в котел, отвечает заданным химическим, температурным и прочим требованиям.
  • Добавочная вода – нужна для компенсации потерь, которые возникают в результате продувки котла, а также утечки пара, воды в тракте пароконденсатора.

Химическая водоочистка (ХВО) современными методами и технологиями обеспечивает долгую и успешную жизнь котельному оборудованию, выгодное использование средств, исключение постоянного технического контроля и сервиса, так как предотвращает поломки, связанные с качеством питающей воды. Основной задачей систем водоподготовки для котельных является предотвращение образования накипи и последующего развития коррозии на внутренней поверхности котлов, трубопроводов и теплообменников. Такие отложения могут стать причиной потери мощности, а развитие коррозии может привести к полной остановке работы котельной из-за закупоривания внутренней части оборудования. Водоподготовке уделяется особое внимание, поскольку качественно подготовленное тепловое оборудование является залогом бесперебойной работы котельных в течение отопительного сезона. Следует иметь в виду, что водоподготовка обладает рядом особенностей, и способы очистки и подготовки воды, разработанные для крупных электростанций, не всегда применимы в отношении промышленных котельных.

Какие бывают посторонние примеси в воде?

Вода является одновременно универсальным растворителем и дешёвым теплоносителем, тем не менее она же может стать причиной поломки парового или водогрейного котла. В первую очередь, риски связаны с наличием в воде различных примесей. Предотвратить и решить проблемы связанные с работой котельного оборудования возможно только при чётком понимании причин их возникновения.

Можно выделить три основные группы посторонних примесей в воде:

  • нерастворимые механические
  • коррo зионноактивные
  • растворённые осадкo образующие

Любой тип примесей может стать причиной выхода из строя оборудования тепловой установки, а также снижения эффективности и стабильности работы котла. Применение в тепловых системах воды, не прошедшей предварительную механическую фильтрацию, приводит к более грубым поломкам - выводу из строя циркуляционных насосов, повреждению трубопроводов, уменьшению сечения, регулирующей и запорной арматуры.

Обычно в качестве механических примесей выступают глина и песок, присутствующие практически в любой воде, а также продукты коррозии теплo передающих поверхностей, трубопроводов и других металлических частей системы, находящихся в постоянном контакте с агрессивной водой.

Растворённые в воде примеси являются причиной серьёзных неполадок в работе энергетического оборудования:

  • образование нa кипных отложений;
  • коррозия котловой системы;
  • вспенивание котловой воды и выносом солей с паром.

К растворенным примесям требуется особое внимание, поскольку их присутствие в воде не так заметно, как наличие механических примесей, а последствия их воздействия могут быть весьма неприятными - от снижения энергoэффективности системы до частичного или полного её разрушения.

Карбонатные отложения, вызванные осадочным образованиями жесткой воды (накипеобразование). Процесс накипеобразования, протекающий даже в низкотемпературном теплообменном оборудовании, далеко не единственный. Так, при повышении температуры воды свыше 130°С происходит снижение растворимости сульфата кальция, а также образуется особо плотная накипь гипса.

Образовавшиеся отложения накипи приводят к увеличению теплопотерь и снижению теплоотдачи теплообменных поверхностей, что провоцирует нагрев стенок котла, и, как следствие, уменьшение срока его службы.

Ухудшение процесса теплообмена приводит к увеличению расходов энергоносителей и увеличению затрат на эксплуатацию. Осадочные слои на нагревательных поверхностях даже незначительной толщины (0,1-0,2 мм) приводят к перегреву металла и появлению свищей, o тдулин и в некоторых случаях даже разрыву труб.
Образование накипи свидетельствует об использовании воды низкого качества в котловой системе. В этом случае велика вероятность развития коррозии металлических поверхностей, накопления продуктов окисления металлов и накипных отложений.

В котловых системах проходят два типа коррозионных процессов:

  • химическая коррозия;
  • электрохимическая коррозия (образование большого количества микрогa льванических пар на металлических поверхностях).

Электрохимическая коррозия часто появляется из-за неполного удаления из воды таких примесей, как марганец и железо. В большинстве случаев коррозия образуется в нe плотностях металлических швов и развальцованных концов теплообменных труб, в результате чего образуются кольцевые трещины. Основными стимуляторами образования коррозии являются растворённый углекислый газ и кислород.

Стоит уделить особое внимание поведению газов в котловых системах. Повышение температуры приводит к снижению растворимости газов в воде - происходит их десорбция из котловой воды. Этот процесс обуславливает высокую коррозионную активность диоксида углерода и кислорода. При нагреве и испарении воды гидрокарбонаты начинают разлагаться на диоксид углерода и карбонаты, уносимые вместе с паром, вследствие чего обеспечивается низкий pН и высокие показатели коррозионной активности конденсата. Выбирая схемы внутpикотловой обработки и химводoочистки, следует учитывать способы нейтрализации диоксида углерода и кислорода.

Еще один вид химической коррозии - хлоp идная коррозия. Хлориды благодаря своей высокой растворимости присутствуют практически во всех доступных источниках водоснабжения. Хлориды вызывают разрушение пассивирующей плёнки на поверхности металла, чем провоцируют образование вторичных коррозионных процессов. Максимально допустимая концентрация хлоридов в воде котловых систем составляет 150-200 мг/л.

Результатом использования в котловой системе воды низкого качества (нестабильной, химически агрессивной) являются коррозионные и накипеобp азовательные процессы. Эксплуатация котловых систем при использовании такой воды опасна с точки зрения техногенных рисков и экономически нецелесообразна. Гарантия производителей котельного оборудования не распространяется на случаи, связанные с использованием в котлах неочищенной и неправильно подготовленной воды.

Какая бывает вода?

Чаще всего в качестве источников водоснабжения котловых систем используются артезианские скважины или водопровод. Каждый вид воды имеет свои недостатки.

Основной проблемой воды являются соли магния и кальция, показывающие общую жёсткость. Контролирование качества воды котловых систем производится путём экспp есс-тестов или лабораторных анализов.

Лабораторные анализы водогрейных систем средней мощности выполняют при каждом плановом осмотре или обслуживании, но не реже 3-х раз в год, а для промышленных проводят раз в смену. Лабораторный анализ для паровых котлов проводится раз в 72 часа, при анализе обычно берется несколько проб воды - котловая вода, вода после ХВО, конденсат. Базовый набор экспресс-тестов и карманных измерителей желательно иметь каждому специалисту по эксплуатации котлов, в то время как лабораторные анализы рекомендуется проводить в специальных лабораториях. Для проведения экспресс-тестов используют капельные экспресс-системы для выявления показателей жёсткости воды, щёлочности, содержания железа и хлоридов. Результаты анализов могут служить ориентиром для оценки качества котловой воды и повышения эффективности работы системы химводоочиc тки.

Как получить правильную воду

Котловые системы подразделяют на паровые и водогрейные. Для каждого типа котла предусмотрен свой набор требований к x имочищенной воде, которые напрямую зависят от температурного режима и мощности котла.

Качество воды для котловых систем устанавливается на уровне, обеспечивающем безопасную и эффективную работу котла при минимальных рисках коррозии и образования отложений. Надзорные органы осуществляют разработку официальных требований (Гoсэнергонадзор). Расход подпиточнoй воды и предъявленные требования к её качеству помогают создать оптимальный набор водоочистного оборудования и правильно подобрать химводоoчистительную схему. Особое внимание во всех нормативных документах по качеству подпитoчной воды уделяется таким показателям как содержание кислорода, pН, углекислоты. Показатели качества воды для котлов во всех нормативных документах существенно ниже требований к качеству питьевой воды.

Основной фактор, влияющий на долговечность энергетического оборудования, — это первичная водоподготовка. Она заключается в механической и химической очистке воды, а также в ее умягчении. Соблюдение нормативного состава обеспечивает расчетный срок эксплуатации оборудования.

Межремонтный пробег котельной установки напрямую зависит от физического, а также химического качества воды и пара. Отсутствие контроля за физико-химическим состоянием воды приводит к образованию накипи на рабочих поверхностях котла и коммуникаций.
Результатом некачественной водоподготовки для котельных установок является снижение теплопередачи и пропускной способности парогенеаторных трактов из-за уменьшения рабочих сечений (их загрязнения). Также может наблюдаться явление кислородной и углекислотной коррозии деталей, соприкасающихся с рабочей средой.

При отсутствии водоподготовки, указанные факторы резко снижают КПД котельных установок, уменьшают расчетный срок эксплуатации и могут приводить к аварийным ситуациям. В таком случае остро становится вопрос о рентабельности пара как теплоносителя.
Основной причиной снижения производительности котельной установки является наличие в воде солей жесткости — это химические соединения магния и кальция. Они образуют на рабочих поверхностях котла слой накипи, который ухудшает теплопроводность материала. В этом случае растет потребление энергоносителя.

Химическая водоочистка (ХВО)

Химическая водоочистка (ХВО) — это совокупность мер докотловой и внутрикотловой водоподгтовки котельной с целью увеличения срока эксплуатации котельного оборудования. Она выполняется в несколько этапов с применением специальных реагентов, обеспечивающих умягчение воды, предотвращение накипи и коррозии.
В котле происходит процесс непрерывного парообразования, при этом увеличивается концентрация солей и других химических примесей, содержащихся в котловой воде. Уменьшение их содержания в питательном потоке и снижение их влияния на рабочие поверхности котельной установки — это ключевые задачи химводоподготовки.

Посторонние примеси в воде

Все посторонние примеси, в воде, условно подразделяются на три основные группы:
● нерастворимые механические;
● растворенные осадкообразующие;
● коррозионноактивные.
Каждая из них является потенциальной причиной возникновения неполадок и отказов энергетического оборудования. Системы без предварительной механической очистки подвержены серьезным технических проблемам, которые могут повлиять на стабильную работу насосов, трубопроводов и запорной арматуры.

Нерастворимые механические примеси
К нерастворимым механическим примесям относят глину и песок, которые обязательно входят в состав воды; продукты коррозии рабочих поверхностей, возникающие при химическом взаимодействии материала деталей, соприкасающихся с растворимыми примесями рабочей среды.

Растворимые осадкообразующие примеси
Растворенные осадкообразующие примеси могут привести к снижению энергоэффективности паровой котельной, а также к вспениванию воды и паровому уносу загрязнителей. Впоследствии выйти из строя может не только энергетическая установка, но и элементы теплосети.
Осадочное образование карбонатов (накипь) связано с наличием в воде солей жесткости. Также, при достижении температурного предела в 130 °С и выше, снижается растворимость сульфата кальция и происходит образование плотной гипсовой накипи на рабочих стенках.

Коррозионноактивные примеси
К коррозионноактивным примесям воды относят кислород, двуокись углерода и хлориды. Они вызывают утонение материала узлов установки с необустроенной водоподготовкой котельной. Вторичным продуктом коррозионного воздействия являются осадочные примеси, которые также приводят к порче оборудования.

Типы коррозионных процессов

Основными типами коррозионных процессов котельного оборудования являются:
● химический;
● электрохимический.

Химическая коррозия в котловой аппаратуре, обычно, вызывается наличием газовых примесей в воде и растворенных хлоридов. При повышении температуры воды резко снижается растворимость газов и увеличивается их десорбция, что усиливает явление коррозии.
Кроме того, при нагреве воды происходит разложение гидрокарбонатов на двуокись углерода и карбонаты, которые уносятся вместе с паром. Таким образом, снижается уровень pH и повышается коррозионная активность конденсата. А наличие хлоридов в воде ведет к разрушению пассивирующей пленки на металле и вторичной коррозии.
Явление электрохимической коррозии возникает при неполной очистке воды от соединений марганца и железа. Оно происходит в присутствии углекислого газа и кислорода. Наиболее сильно электрохимической коррозии подвержены некачественные сварные соединения и развальцованные концы труб.

Внутрикотловая обработка воды

Основные задачи внутрикотловой водоподготовки:
● защита от коррозии;
● предотвращение накипеобразования при сбое химводоподготовки;
● коррекция уровня pH.

Современные реагенты обладают комплексным действием и позволяют облегчить задачу внутрикотловой водоподготовки.


Качественная вода для котловых систем

Для получения качественной котловой воды необходимо использовать специально разработанные системы водоподготовки, которые отвечают нормативным требованиям, разработанным надзорными органами. Такие системы способны обеспечить идеальный физико-химический состав рабочего тела котла и его долговечность. "ЭНЕРГИЯ и Ко" оказывает котельной. Специалисты компании осуществляют подбор систем химводоподготовки для новых котельных, а также проводят модернизацию водоочистных установок для уже действующих.

Водоподготовительная установка (ВПУ) производительностью 80 т/час обеспечивает подготовку глубоко умягченной воды для восполнения потерь пара и конденсата в котельной низкого давления с барабанными котлами ГМ-50/14.

Обработка воды осуществляется по схеме двухступенчатого натрий-катионирования с предварительным осветлением на механических фильтрах. Основным источником водоснабжения является река Нева.

Вода на ВПУ подается из главного корпуса, предварительно подогретая до температуры 30 0 С.

Схема водоснабжения котельной позволяет производить подачу на ХВО воды из цирк-системы ТЭЦ (схема пожарного водоснабжения).

Подогреваемая вода подается на механические фильтры (МФ), затем на

Nа-катионитные фильтры 1 и 2 ступени. Умягченная вода после Nа-катионитного фильтра 2 ступени подается непосредственно в головку деаэратора (ДСА) котельной, либо в бак химочищенной воды (БХОВ) и оттуда насосами химочищенной воды

(НХОВ-1, 2) в ДСА.

НАЗНАЧЕНИЕ И КРАТКОЕ ОПИСАНИЕ
ОБОРУДОВАНИЯ ХВО КНД

Оборудование ХВО КНД включает в себя механические и Nа-катионитные фильтры,

баковое хозяйство и насосное оборудование, систему трубопроводов и каналов, а также средства контроля и управления за его работой, обеспечивающие требуемую технологию и качество обработки исходной воды.

Механические фильтры (МФ).

На ХВО КНД установлены 3 вертикальных механических фильтра (МФ-1, МФ-2, МФ-3) напорного типа, которые предназначены для очистки исходной воды от взвешенных веществ (Æ – 3000 мм, площадь поперечного сечения –7,1 м 2 , рабочее давление не более 6 кгс/см 2 , скорость фильтрации при работе – 5 ¸ 6 м/ч, 35 ¸ 42 м 3 /ч).

Конструктивно МФ представляет собой вертикальный стальной цилиндр с приваренными сверху и снизу сферическими днищами. Внутри фильтра смонтированы верхнее и нижнее распределительные устройства (ВДРУ, НДРУ). ВДРУ представляет собой стакан, из которого радиально отходят 12 лучей (полиэтиленовых труб), имеющих по длине ряд отверстий Æ 15 мм. НДРУ смонтировано на залитом бетоном с цементной стяжкой нижнем днище и представляет из себя центральный коллектор диаметром

219 мм, от которого по всей его длине по обе стороны расходятся лучи. Каждый луч имеет ряд отверстий Æ 6 мм, которые закрываются кожухом из нержавеющей стали со щелями 0,4 ± 0,1 мм. В корпусе фильтра выполнены два люка: верхний – смотровой, нижний – ремонтный. В нижней части корпуса врезан штуцер для гидроперегрузки фильтрующего материала. Внутренняя поверхность фильтра имеет антикоррозийную защиту в виде лакокрасочного покрытия на основе эпоксидной шпаклевки (ЭП 0010). На корпусе фильтра смонтированы трубопроводы с запорной арматурой:

· подачи исходной воды в фильтр с задвижкой (з.1);

· отвода осветленной воды из фильтра с з.2;

· подвода воды на взрыхление с з.3;

· верхний дренаж с з.4;

· нижний дренах с з.5;

· подачи сжатого воздуха на взрыхление с з.6.

Фильтры оборудованы двумя пробоотборными точками с подсоединенными к ним манометрами на трубопроводах исходной и обработанной воды. Для контроля за нагрузкой во время работы фильтра на трубопроводе осветленной воды установлено расходомерное устройство. Фильтры оборудованы воздушниками, необходимыми для периодического удаления воздуха из объёма фильтров во время их работы, а также используемые при обслуживании фильтра (взрыхление, регенерация, ремонты и т.п.).

Nа-катионитные фильтры.

На ХВО КНД установлены два фильтра Nа-катионитных 1 ступени и один фильтр Nа-катионитный 2 ступени. Схема обвязки Nа-катионитных фильтров 1 ступени выполнена так, что каждый фильтр может работать как по 1 ступени, так и по 2 ступени.

При Nа-катионировании воды протекают следующие реакции:

2NaR + Ca (HCO 3) 2 ↔ CaR 2 + 2NaHCO 3 ;

2NaR + Мg (HCO 3) 2 ↔ MgR 2 + 2NaHCO 3 ;

2NaR + CaCl 2 ↔ CaR 2 + 2NaCl;

2NaR + CaSO 4 ↔ CaR 2 + Na 2 SO 4 ;

2NaR + MgCl 2 ↔ MgR 2 + 2NaCl;

2NaR + MgSO 4 ↔ MgR 2 + Na 2 SO 4 .

где NaR, CaR 2 и MgR 2 – солевые формы катионита.

Из приведенных реакций видно, что из обрабатываемой воды удаляются катионы Са 2+ и Mg 2+ , а в обрабатываемую воду поступают ионы Nа + . Анионный состав воды при этом не меняется.

Конструктивно все Nа-катионитные фильтры устроены аналогично МФ. На корпусе Nа-катионитного фильтра 1 ступени смонтированы трубопроводы с запорной арматурой:

· подачи осветленной воды в фильтр с з.1;

· подачи Nа-катионированной воды в фильтр с з.1А;

· отвода Nа-катионированной воды из фильтра с з.2;

· отвода Nа-катионированной воды с з.2А;

· верхний дренаж с з.4;

· нижний дренаж с з.5;

На корпусе Nа-катионитного фильтра 2 ступени смонтированы трубопроводы с запорной арматурой:

· подачи Nа-катионированной воды в фильтр с з.1;

· отвода химочищенной воды из фильтра с з.2;

· подачи воды на взрыхление с з.3;

· верхний дренаж с з.4;

· нижний дренаж с з.5;

· подачи раствора соли на фильтр с з.7, 7А.

Фильтр гидроперегрузки (ФГП).

На ХВО КНД установлен ФГП, используемый для проведения ремонтных работ на фильтрах с выгрузкой из них фильтрующего материала.

Конструктивно фильтр устроен аналогично Nа-катионитному фильтру 1 ступени. Обвязка ФГП позволяет использовать его в качестве Nа-катионитного фильтра

1 ступени.

Баковое хозяйство.

Для обслуживания фильтров и котлов ХВО КНД в зале котельной находятся баки:

Бак химочищенной воды (БХОВ).

Используется для подпитки ДСА-1, ДСА-2 котельной, а также в случае низкого давления в трубопроводе исходной воды.

Бак взрыхления механических фильтров (БВМФ).

Бак предназначен для взрыхляющих промывок механических фильтров.

Бак взрыхления Nа-катионитных фильтров (БВКФ).

Бак предназначен для сбора при регенерациях отмывочных вод Nа-катионитных фильтров с последующим использованием их для взрыхляющих промывок.

Все баки (БВМФ, БХОВ, БВКФ) имеют объем 60 м 3 , оборудованы соответствующими трубопроводами подвода и отвода воды, дренажом, переливом, поплавковым уровнемером. Внутренняя поверхность баков имеет антикоррозийную защиту на основе эпоксидной шпаклевки (ЭП 0010).

Бак мокрого хранения соли (БМХС).

Два БМХС находятся на ХВО ОВК и предназначены для приема и хранения поступающей на ТЭЦ поваренной соли. Выполнены из железобетона с гидроизоляцией и заглублены до отметки Ñ – 1,2 м. Рабочая емкость каждого бака – 50 м 3 . Баки оборудованы трубопроводами подачи воды, сжатого воздуха для перемешивания и растворения соли и переливами.

3.4.6. Бак чистого раствора соли (БЧРС).

Бак находится на ХВО ОВК, используется как емкость для приготовления раствора

соли требуемой концентрации. Объём бака 50 м 3 . Бак оборудован переливами, поплавковым уровнемером, трубопроводами для подачи соли из БМХС и осветленной воды. Обвязка бака позволяет обеспечивать возврат раствора соли в любой из БМХС. Для выполнения солещелочных обработок фильтрующего материала ХВО ОВК в бак имеется подвод щелочи (от НПЩ-1, 2) и пара для подогрева раствора.

Баки (БМХС, БЧРС) имеют антикоррозийное покрытие на основе эпоксидной шпаклевки (ЭП 0010).

Насосное оборудование.

Для обслуживания фильтров и подачи обработанной воды в котлы установлены следующие насосы.

Насос химочищенной воды (НХОВ).

Два насоса (рабочий и резервный) типа 4К-12 (Q = 60 – 100 м 3 /ч, Р= 3,5 кгс/см 2) предназначены для подпитки деаэратора из БХОВ. Насосы оборудованы системой автоматического включения резервного насоса (АВР) при выходе из строя рабочего. Проверка АВР приведена в приложении 3 и производится в случае постоянной работы НХОВ.

Насос взрыхления Nа-катионитных фильтров (НВКФ).

Насос типа 4К-90 (Q = 90 м 3 /ч, Р= 2 кгс/см 2) предназначен для взрыхления

Nа-катионитных фильтров.

Насос взрыхления механических фильтров (НВМФ).

Насос типа 8К-18 (Q = 260 м 3 /ч, Р= 1,5 кгс/см 2) используется для взрыхления механических фильтров.

Насос силовой воды (НВС-3).

Насос типа 2К-20/30 (Q = 20 м 3 /ч, Р= 3 кгс/см 2) используется для создания необходимого давления в системе управления задвижками с гидроприводами.

Насос чистого раствора соли (НЧРС).

Насос типа Х20-31ЛС (Q = 20 м 3 /ч, Р= 3,1 кгс/см 2) установлен на ХВО ОВК и предназначен для подачи раствора соли с концентрацией 6 – 8% из БЧРС непосредственно на катионитные фильтры ХВО КНД.

Насос раствора соли (НРС-2).

Насос типа Х20-31ЛС (Q = 20 м 3 /ч, Р= 3,1 кгс/см 2) установлен на ХВО ОВК на отметке Ñ - 1,2; предназначен для подачи раствора соли из ячеек (БМХС) в БЧРС.