ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

По обслуживанию оборудования ЦТП (ИТП). Схемы тепловых пунктов

Традиционное в нашей стране регулирование отпуска теплоты потребителю на сегодняшнее время оказывается многозатратным, в связи с чем все более широкое распространение получает качественно-количественное регулирование отпуска тепла. В статье рассматриваются обе схемы с точки зрения российских реалий.

  • Структура современных систем теплоснабжения и предложения по ее изменению

    В связи с особенностями климатических условий бесперебойное обеспечение населения и промышленности тепловой энергией в России является актуальной социальной и экономической проблемой.

  • Применение разборных теплообменников

    Высокий КПД и доступная цена обеспечивают теплообменникам приоритет на строительном рынке. По причине низкой потери тепла и высоких технических качеств теплообменники являются важной частью оборудования для строительства.

    Все о тепловом пункте

    Тепловой пункт (ТП) — это комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

    Назначение

    Основными задачами ТП являются:
    Преобразование вида теплоносителя
    Контроль и регулирование параметров теплоносителя
    Распределение теплоносителя по системам теплопотребления
    Отключение систем теплопотребления
    Защита систем теплопотребления от аварийного повышения параметров теплоносителя
    Учет расходов теплоносителя и тепла


    Виды тепловых пунктов

    Тепловые пункты различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых, определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП. Различают следующие виды тепловых пунков:
    Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
    Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
    Блочный тепловой пункт (БТП). Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

    Источники тепла и системы транспорта тепловой энергии

    Источником тепла для ТП служат теплогенерирующие предприятия (котельные, теплоэлектроцентрали). ТП соединяется с источниками и потребителями тепла посредством тепловых сетей. Тепловые сети подразделяются на первичные магистральные теплосети, соединяющие ТП с теплогенерирующими предприятиями, и вторичные (разводящие) теплосети, соединяющие ТП с конечными потребителями. Участок тепловой сети, непосредственно соединяющий ТП и магистральные теплосети, называется тепловым вводом.

    Магистральные тепловые сети, как правило, имеют большую протяженность (удаление от источника тепла до 10 км и более). Для строительства магистральных сетей используют стальные трубопроводы диаметром до 1400 мм. В условиях, когда имеется несколько теплогенерирующих предприятий, на магистральных теплопроводах делаются закольцовки, объединяющие их в одну сеть. Это позволяет увеличить надёжность снабжения тепловых пунктов, а, в конечном счёте, потребителей теплом. Например, в городах, в случае аварии на магистрали или местной котельной, теплоснабжение может взять на себя котельная соседнего района. Также, в некоторых случаях, общая сеть даёт возможность распределять нагрузку между теплогенерирующими предприятиями. В качестве теплоносителя в магистральных теплосетях используется специально подготовленная вода. При подготовке в ней нормируются показатели карбонатной жёсткости, содержания кислорода, содержания железа и показатель pH. Неподготовленная для использования в тепловых сетях (в том числе водопроводная, питьевая) вода непригодна для использования в качестве теплоносителя, так как при высоких температурах, вследствие образования отложений и коррозии, будет вызывать повышенный износ трубопроводов и оборудования. Конструкция ТП предотвращает попадание относительно жёсткой водопроводной воды в магистральные теплосети.

    Вторичные тепловые сети имеют сравнительно небольшую протяженность (удаление ТП от потребителя до 500 метров) и в городских условиях ограничиваются одним или парой кварталов. Диаметры трубопроводов вторичных сетей, как правило, находятся в пределах от 50 до 150 мм. При строительстве вторичных тепловых сетей могут использоваться как стальные, так и полимерные трубопроводы. Использование полимерных трубопроводов наиболее предпочтительно, особенно для систем горячего водоснабжения, так как жёсткая водопроводная вода в сочетании с повышенной температурой приводит к интенсивной коррозии и преждевременному выходу из строя стальных трубопроводов. В случае с индивидуальным тепловым пунктом, вторичные тепловые сети могут отсутствовать.

    Источником воды для систем холодного и горячего водоснабжения служат водопроводные сети.

    Системы потребления тепловой энергии

    В типичном ТП имеются следующие системы теплоснабжения :
    Система горячего водоснабжения (ГВС). Предназначена для снабжения потребителей горячей водой. Различают закрытые и открытые системы горячего водоснабжения. Часто тепло из системы ГВС используется потребителями для частичного отопления помещений, например, ванных комнат, в многоквартирных жилых домах.
    Система отопления. Предназначена для обогрева помещений с целью поддержания в них заданной температуры воздуха. Различают зависимые и независимые схемы присоединения систем отопления.
    Система вентиляции. Предназначена для подогрева наружного воздуха, при обеспечении необходимого воздухообмена для создания условий воздушной среды в помещениях. Также может использоваться для присоединения зависимых систем отопления потребителей.
    Система холодного водоснабжения. Не относится к системам, потребляющим тепловую энергию, однако присутствует во всех тепловых пунктах, обслуживающих многоэтажные здания. Предназначена для обеспечения необходимого давления в системах водоснабжения потребителей.

    Принципиальная схема теплового пункта

    Схема ТП зависит с одной стороны от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.
    Принципиальная схема теплового пункта

    Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях, на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

    Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего, часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру, вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

    Система отопления, также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

    Примечания
    Правила технической эксплуатации тепловых энергоустановок. Утверждены приказом Министерства энергетики РФ от 24.03.2003 № 115
    Правила техники безопасности при эксплуатации теплопотребляющих установок и тепловых сетей потребителей
    СНиП 2.04.01-85. ВНУТРЕННИЙ ВОДОПРОВОД И КАНАЛИЗАЦИЯ ЗДАНИЙ. Качество и температура воды в системах водоснабжения.
    ГОСТ 30494-96. ЗДАНИЯ ЖИЛЫЕ И ОБЩЕСТВЕННЫЕ. Параметры микроклимата в помещениях.

    Литература
    Соколов Е.Я. Теплофикация и тепловые сети: учебник для вузов. — 8-е изд., стереот. / Е.Я. Соколов. — М.: Издательский дом МЭИ, 2006. — 472 с.: ил.
    СНиП 41-01-2003. ОТОПЛЕНИЕ, ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ.
    СНиП 2.04.07-86 Тепловые сети (изд. 1994 с изменением 1 БСТ 3-94, изменением 2, принятым постановлением Госстроя России от 12.10.2001 N116 и исключением раздела 8 и приложений 12-19). Тепловые пункты.

    Периодические издания
    Журнал “Вентиляция, отопление, кондиционирование воздуха, теплоснабжение и строительная теплофизика” (АВОК).

    Материал из Википедии — свободной энциклопедии

  • ИНСТРУКЦИЯ

    По обслуживанию оборудования ЦТП (ИТП)

    ПОРЯДОК ПОЛЬЗОВАНИЯ ИНСТРУКЦИЕЙ

    1. Инструкция должна быть вывешена на рабочем месте.

    2. Инструкция выдается под расписку на руки оператору теплового пункта, остальные обязаны расписаться на контрольном экземпляре инструкции.

    3. Контрольный экземпляр инструкции должен храниться у главного энергетика (механика) предприятия (организации, учреждения).

    ОБЩИЕ ПОЛОЖЕНИЯ

    1. Оператор теплового пункта находящийся на дежурстве несет ответственность за каждую аварию и за все повреждения или несчастные случаи, происшедшие по причине нарушения правил и инструкций.

    2. Оператор теплового пункта непосредственно осуществляет осмотр, подготовку к пуску оборудования центрального теплового пункта, обслуживание и остановку оборудования. При необходимости привлекают других работников предприятия (организации).

    3. В ЦТП должна находиться следующая документация:

    · тепломеханического оборудования;

    · электрооборудования;

    · КИП и А;

    · разводящих сетей после ЦТП с присоединенными зданиями и их характеристиками;

    б) Температурный график;

    в) Сменный журнал.

    4. График ППР.

    5. Ремонтный журнал.

    6. Данная инструкция, должностная инструкция по ТБ и охране труда.

    7. Инструкция по эксплуатации автоматики.

    8. Инструкция по эксплуатации автоматики включения насосов.

    9. Паспорт ЦТП.

    В ЦТП должно быть также:

    1. Таблица с указанием ответственных за эксплуатацию тепломеханического оборудования, электрооборудования, оборудования КИП и А и их телефонами.

    2. На входных дверях табличка с номером ЦТП и указанием его принадлежности.

    В ЦТП должен находиться запас эксплуатационных материалов: смазка, сальниковая набивка, паранит и т.д.

    В ЦТП должна поддерживаться чистота и порядок, как при эксплуатации, так и при ремонтных работах.

    Допуск посторонних лиц в ЦТП возможен только с разрешения руководства или ответственных лиц за исправное состояние и безопасную эксплуатацию ТУ и ТС.

    Основные технические данные ЦТП

    Центральный тепловой пункт - ЦТП предназначается для снабжения теплом систем отопления систем приточной вентиляции, кондиционирования воздуха и централизованного горячего водоснабжения подсоединенных к нему объектов.

    ЦТП состоит из объемных элементов-агрегатов заводского изготовления.

    Тепломеханическая часть ЦТП собирается из следующих агрегатов:

    1. Агрегат теплового узла с водонагревателем горячего водоснабжения.

    2. Агрегат водомерного узла с повысительными (хозяйственными) насосами.

    3. Агрегат водонагревателя отопления с циркуляционными насосами.

    4. Агрегат подпиточных насосов отопления.

    5. Агрегат циркуляционных насосов системы горячего водоснабжения.

    Источником тепла для ЦТП является __ район ОАО Московской теплосетевой компании с круглосуточной работой тепловых сетей при качественном регулировании. Теплоноситель - перегретая вода с параметрами 150 - 70°С.

    ЦТП оборудуется ремонтным освещением при напряжении 36 В, водопроводом, канализацией, приточно-вытяжной вентиляцией, телефоном.

    Схема центрального теплового пункта

    Присоединение ЦТП к тепловым сетям осуществляется следующим образом:

    Сетевая вода поступает в межтрубное пространство II-й ступени водоподогревателя горячего водоснабжения, а затем в систему отопления зданий, присоединенных к тепловым сетям по зависимой схеме - через элеваторы. В водоподогревателе отопления сетевая вода, проходя по латунным трубкам, отдает свое тепло местной воде системы отопления, проходящей в межтрубном пространстве.

    Вода из обратных трубопроводов систем отопления и из водоподогревателя далее возвращается в наружные тепловые сети.

    Водопроводная вода, проходя по трубам водоподогревателя водоснабжения I-й ступени, нагревается обратной водой примерно до 30°С, затем догревается во II-й ступени до 60°С.

    В ЦТП для нужд горячего водоснабжения принят к установке скоростной водоподогреватель с латунными трубками диаметром 14-16, длина секции 4,0 м.

    Во избежание вскипания нагреваемой воды предусматривается установка приборов автоматики, отключающей подачу сетевой воды при повышении температуры нагреваемой воды выше 60°С и снова включающих подачу сетевой воды при падении температуры ниже 60°С.

    Для учета расхода тепла предусмотрен теплосчетчик типа ____________________. Первичные катушки, диаметром ______ мм установлены на прямом и обратном трубопроводах сетевой воды. На линии подпитки системы отопления установлен расходомер типа ____________, диаметром _____ мм.

    Для учета расхода воды на горячее водоснабжение предусматривается установка на водопроводной линии, идущей к подогревателю, горячеводного водомера типа ____________, диаметром ____ мм.

    Для циркуляции горячей воды в системе горячего водоснабжения устанавливается два насоса (один резервный).

    Для циркуляции местной воды системы отопления устанавливается два насоса (один резервный) мощностью в зависимости от теплопотерь и емкости системы.

    Подпитка независимой системы отопления осуществляется подпиточными насосами (один резервный).

    В ЦТП установлены три водопроводных повысительных насоса мощностью и напором, зависящим от количества разбираемой воды и этажности зданий. Во избежание повышения давления в местной системе холодного водоснабжения выше 60 м.вод.ст., устанавливаются 2 регулирующих клапана “после себя”.

    Тепломеханическая часть

    1. В агрегат теплового узла с водоподогревателями горячего водоснабжения входят:

    а) стальные головные задвижки;

    б) стальные задвижки отопления;

    в) стальные секционные задвижки, отключающие:

    II-ю ступень от системы отопления;

    II-ю ступень от первой ступени;

    I-ю ступень от системы отопления.

    Помимо этого на агрегате методом сварки установлены грязевики на подающей линии и грязевики на обратной линии из систем отопления, манометры, термометрические гильзы с термометрами, пробковые и 3-х ходовые латунные краны, соединительные импульсные трубки, термореле на линии ГВС, автоматика типа ____________________________________.

    Когда речь заходит о рациональном использовании тепловой энергии, все сразу же вспоминают о кризисе и неимоверных счетах по «жировкам», им спровоцированных. В новых домах, где предусмотрены инженерные решения, позволяющие регулировать потребление тепловой энергии в каждой отдельной квартире, можно найти оптимальный вариант отопления или горячего водоснабжения (ГВС), который устроит жильца. В отношении старых строений дело обстоит куда сложнее. Индивидуальные тепловые пункты становятся единственным разумным решением задачи экономии тепла для их обитателей.

    Определение ИТП — индивидуальный тепловой пункт

    Согласно хрестоматийному определению ИТП — это не что иное, как тепловой пункт, предназначенный для обслуживания целого здания или отдельных его частей. Эта сухая формулировка требует пояснения.

    Функции индивидуального теплового пункта заключаются в перераспределении энергии, поступающей из сети (центральный тепловой пункт или котельная) между системами вентиляции, ГВС и отопления, в соответствии с потребностями здания. При этом учитывается специфика обслуживаемых помещений. Жилые, складские, подвальные и другие их виды, разумеется, должны отличаться и по температурному режиму и параметрам вентиляции.

    Установка ИТП подразумевает наличие отдельного помещения. Чаще всего оборудование монтируется в подвальных или технических помещениях многоэтажек, пристройках к многоквартирным домам или в отдельно стоящих строениях, находящихся в непосредственной близости.

    Модернизация здания путем установки ИТП требует существенных финансовых затрат. Несмотря на это, актуальность ее проведения продиктована преимуществами, сулящими несомненные выгоды, а именно:

    • расход теплоносителя и его параметры подвергаются учету и оперативному контролю;
    • распределение теплоносителя по системе в зависимости от условий теплопотребления;
    • регулирование расхода теплоносителя, в соответствии с возникшими требованиями;
    • возможность изменения вида теплоносителя;
    • повышенный уровень безопасности в случаях аварий и прочие.

    Возможность влиять на процесс расхода теплоносителя и его энергетические показатели привлекательна сама по себе, не говоря об экономии от рационального использования тепловых ресурсов. Единовременные же затраты на оборудование ИТП с лихвой окупятся за весьма скромный промежуток времени.

    Структура ИТП зависит от того, какие системы потребления он обслуживает. В общем случае в его комплектацию могут входить системы обеспечения отопления, ГВС, отопления и ГВС, а также отопления, ГВС и вентиляции. Поэтому в состав ИТП обязательно входят следующие устройства:

    1. теплообменники для передачи тепловой энергии;
    2. арматура запорного и регулирующего действия;
    3. приборы для контроля и измерения параметров;
    4. насосное оборудование;
    5. щиты управления и контроллеры.

    Здесь приведены лишь устройства, присутствующие на всех ИТП, хотя каждый конкретный вариант может иметь и дополнительные узлы. Источник холодного водоснабжения, обычно находится в том же помещении, например.

    Схема теплового пункта отопления построена с использованием пластинчатого теплообменника и является полностью независимой. Для поддержания давления на требуемом уровне устанавливается сдвоенный насос. Предусмотрен простой способ «доукомплектации» схемы системой горячего водоснабжения и другими узлами, и агрегатами, включая приборы учета.

    Работа ИТП для ГВС подразумевает включение в схему пластинчатых теплообменников, работающих только на нагрузку по ГВС. Перепады давления в этом случае компенсируются группой насосов.

    В случае организации систем для отопления и ГВС выше рассмотренные схемы объединяются. Пластинчатые теплообменники отопления работают вместе с двухступенчатым контуром ГВС, причем подпитка системы отопления осуществляется от обратного трубопровода теплосети посредством соответствующих насосов. Сеть холодного водоснабжения же является подпитывающим источником для системы ГВС.

    Если к ИТП необходимо подключить и систему вентиляции, то он оснащается еще одним пластинчатым теплообменником, связанным с ней. Отопление и ГВС продолжают работать по ранее описанному принципу, а контур вентиляции подключается аналогично отопительному с добавлением необходимых контрольно-измерительных приборов.

    Индивидуальный тепловой пункт. Принцип работы

    Центральный тепловой пункт, являющийся источником теплоносителя, подает горячую воду на вход индивидуального теплового пункта через трубопровод. Причем эта жидкость никоим образом не попадает ни в одну из систем здания. Как для отопления, так и для подогрева воды в системе ГВС, а также вентиляции используется исключительно температура подаваемого теплоносителя. Передача энергии в системы происходит в теплообменниках пластинчатого типа.

    Температура передается магистральным теплоносителем воде, забранной из системы холодного водоснабжения. Итак, цикл движения теплоносителя начинается в теплообменнике, проходит через тракт соответствующей системы, отдавая тепло, и по обратному магистральному водопроводу возвращается для дальнейшего использования на предприятие, обеспечивающее теплоснабжение (котельную). Часть цикла, предусматривающая отдачу тепла, обогревает жилища и делает воду в кранах горячей.

    Холодная вода поступает в подогреватели из системы холодного водоснабжения. Для этого используется система насосов, поддерживающих требуемый уровень давления в системах. Насосы и дополнительные устройства необходимы для снижения, либо повышения, давления воды из снабжающей магистрали до допустимого уровня, а также его стабилизации в системах здания.

    Преимущества использования ИТП

    Четырехтрубная система теплоснабжения от центрального теплового пункта, применявшаяся раньше достаточно часто, имеет массу недостатков, которые отсутствуют у ИТП. Кроме того, последний имеет ряд весьма значительных преимуществ перед конкурентом, а именно:

    • экономичность, обусловленная значительным (до 30%) снижением потребления тепла;
    • доступность приборов упрощает контроль как за расходом теплоносителя, так и количественными показателями тепловой энергии;
    • возможность гибкого и оперативного влияния на расход тепла путем оптимизации режима его потребления, в зависимости от погоды, например;
    • простота монтажа и довольно скромные габаритные размеры устройства, позволяющие размещать его в небольших помещениях;
    • надежность и стабильность работы ИТП, а также благоприятное влияние на те же характеристике обслуживаемых систем.

    Этот перечень можно продолжать сколь угодно долго. Он отражает лишь основные, лежащие на поверхности, преимущества, получаемые при использовании ИТП. В него можно добавить, например, возможность автоматизации управления ИТП. В этом случае его экономические и эксплуатационные показатели становятся еще более привлекательными для потребителя.

    Наиболее существенным недостатком ИТП, если не считать транспортных расходов и затрат на погрузочно-разгрузочные мероприятия, является необходимость улаживания всевозможного рода формальностей. Получение соответствующих разрешений и согласований можно отнести к очень серьезным задачам.

    Фактически, такие задачи сможет решить только специализированная организация.

    Этапы установки теплового пункта

    Понятно, что одного решения, пусть и коллективного, основанного на мнении всех жильцов дома, недостаточно. Кратко процедуру оснащения объекта, многоквартирного дома, например, можно описать следующим образом:

    1. собственно, позитивное решение жильцов;
    2. заявка в теплоснабжающую организацию для разработки технического задания;
    3. получение технических условий;
    4. пред проектное обследование объекта, для определения состояния и состава имеющегося оборудования;
    5. разработка проекта с последующим его утверждением;
    6. заключение договора;
    7. реализация проекта и проведение пусконаладочных испытаний.

    Алгоритм может показаться, на первый взгляд, достаточно сложным. На самом же деле, всю работу начиная от решения и заканчивая принятием в эксплуатацию можно сделать менее чем за два месяца. Все заботы нужно возложить на плечи ответственной компании, специализирующейся на оказании подобного рода услуг и позитивно зарекомендовавшей себя. Благо, сейчас таковых предостаточно. Останется лишь дожидаться результата.

    Тепловые пункты: устройство, работа, схема, оборудование

    Тепловой пункт представляет собой комплекс технологического оборудования, которое используется в процессе теплоснабжения, вентиляции и горячего водоснабжения потребителей (жилых и производственных зданий, строительных площадок, объектов социального назначения). Главное назначение тепловых пунктов - это распределение тепловой энергии от тепловой сети между конечными потребителями.

    Преимущества установки тепловых пунктов в системе теплоснабжения потребителей

    Среди преимуществ тепловых пунктов можно назвать следующие:

    • минимизация тепловых потерь
    • сравнительно низкие эксплуатационные затраты, экономичность
    • возможность выбора режима теплоснабжения и теплопотребления в зависимости от времени суток и сезона
    • бесшумная работа, малые габариты (по сравнению с другим оборудованием системы теплообеспечения)
    • автоматизация и диспетчеризация процесса эксплуатации
    • возможность изготовления по индивидуальному заказу

    Тепловые пункты могут иметь разные тепловые схемы, типы систем теплопотребления и характеристики используемого оборудования, что зависит от индивидуальных требований Заказчика. Комплектация ТП определяется на основе технических параметров тепловой сети:

    • тепловые нагрузки на сеть
    • температурный режим холодной и горячей воды
    • давление систем тепло- и водоснабжения
    • возможные потери давления
    • климатические условия и т.д.

    Виды тепловых пунктов

    Вид необходимого теплового пункта зависит от его назначения, количества подводящих теплосистем, количества потребителей, способу размещения и монтажа и выполняемых пунктом функций. В зависимости от вида теплового пункта выбирается его технологическая схема и комплектация.

    Тепловые пункты бывают следующих видов:

    • индивидуальные тепловые пункты ИТП
    • центральные тепловые пункты ЦТП
    • блочные тепловые пункты БТП

    Открытые и закрытые системы тепловых пунктов. Зависимые и независимые схемы подключения тепловых пунктов

    В открытой системе теплоснабжения вода для работы теплового пункта поступает непосредственно из теплосетей. Водозабор может быть полным или частичным. Объем воды, забранный для нужд теплового пункта, восполняется поступлением воды в теплосеть. Следует отметить, что водоподготовка в таких системах осуществляется только на входе в теплосеть. Из-за этого качество воды, поступающей потребителю, оставляет желать лучшего.

    Открытые системы, в свою очередь, могут быть зависимыми и независимыми.

    В зависимой схеме подключения теплового пункта к тепловой сети теплоноситель из теплосетей попадает непосредственно в систему отопления. Такая система достаточно проста, так как в ней отсутствует необходимость установки дополнительного оборудования. Хотя эта же особенность ведет к существенному недостатку, а, именно, к невозможности регулирования подачи тепла потребителю.

    Независимые схемы подключения теплового пункта характеризуются экономической выгодой (до 40%), так как в них между оборудованием конечных потребителей и источником теплоэнергии установлены теплообменники тепловых пунктов, которые регулируют количество подаваемого тепла. Также неоспоримым преимуществом является повышение качества подаваемой воды.

    В связи с энергоэффективностью независимых систем многие тепловые компании реконструируют и модернизируют свое оборудование из зависимых систем в независимые.

    Закрытая система теплоснабжения является полностью изолированной системой и использует циркулирующую воду в трубопроводе без забора ее из тепловых сетей. Такая система использует воду только в качестве теплоносителя. Утечка теплоносителя возможна, но вода восполняется автоматически при помощи регулятора подпитки.

    Количество теплоносителя в закрытой системе остается постоянным, а выработка и распределение тепла потребителю регулируется температурой теплоносителя. Закрытая система характеризуется высоким качеством водоподготовки и высокой энергоэффективностью.

    Способы обеспечения потребителей тепловой энергией

    По способу обеспечения потребителей тепловой энергией различают одноступенчатые и многоступенчатые тепловые пункты.

    Одноступенчатая система характеризуются непосредственным присоединение потребителей к тепловым сетям. Место присоединение называется абонентским вводом. Для каждого объекта теплопотребления должен быть предусмотрен свое технологическое оборудование (подогреватели, элеваторы, насосы, арматура, оборудование КИПиА и др.).

    Недостатком одноступенчатой системы подключения является ограничение предела допустимого максимального давления в теплосетях из-за опасности высокого давления для радиаторов отопления. В связи с этим такие системы, в основном, используют для небольшого количества потребителей и для тепловых сетей небольшой длины.

    Многоступенчатые системы подключения характеризуются наличием тепловых пунктов между источником тепла и потребителем.

    Индивидуальные тепловые пункты

    Индивидуальные тепловые пункты обслуживают одного мелкого потребителя (дом, небольшое строение или здание), который уже подключен к системе центрального теплоснабжения. Задача такого ИТП - обеспечение потребителя горячей водой и отоплением (до 40 кВт). Существуют крупные индивидуальные пункты, мощность которых может достигать 2 МВт. Традиционно ИТП размещают в подвале или техническом помещении здания, реже их располагают в отдельно стоящих помещениях. К ИТП подключают только теплоноситель и осуществляют подвод водопроводной воды.

    ИТП состоят из двух контуров: первый контур - это контур отопления для поддержания заданной температуры в отапливаемом помещении при помощи датчика температуры; второй контур - это контур горячего водоснабжения.

    Центральные тепловые пункты

    Центральные тепловые пункты ЦТП применяют для теплообеспечения группы зданий и сооружений. ЦТП выполняют функцию обеспечения потребителей ГВС, ХВС и теплом. Степень автоматизации и диспетчеризации центральных тепловых пунктов (только контроль за параметрами или контроль/управление параметрами ЦТП) определяется Заказчиком и технологическими нуждами. ЦТП могут иметь как зависимую, так и независимую схему подключения к тепловой сети. При зависимой схеме подключения теплоноситель в самом тепловой пункте разделяется на систему отопления и систему горячего водоснабжения. В независимой схеме подключения теплоноситель нагревается во втором контуре теплового пункта поступающей водой из тепловой сети.

    Они поставляются на монтажную площадку в полной заводской готовности. На месте последующей эксплуатации осуществляется только подключение к теплосетям и настройка оборудования.

    Оборудование центрального теплового пункта (ЦТП) включает в себя следующие элементы:

    • подогреватели (теплообменники) - секционные, многоходовые, блочного типа, пластинчатые - в зависимости от проекта, для горячего водоснабжения, поддерживающие нужную температуру и напор воды у водоразборных точек
    • циркуляционные хозяйственные, противопожарные, отопительные и резервные насосы
    • смесительные устройства
    • тепловые и водомерные узлы
    • контрольно-измерительные приборы КИП и автоматики
    • запорно-регулирующая арматура
    • расширительный мембранный бак

    Блочные тепловые пункты (модульные тепловые пункты)

    Блочный (модульный) тепловой пункт БТП имеет блочное исполнение. БТП может состоять из более, чем одного блока (модуля), смонтированных, зачастую, на одной объединенной раме. Каждый модуль является независимым и законченным пунктом. При этом регулирование работой общее. Блоснче тепловые пункты могут иметь как локальную систему управления и регулирования, так и дистанционное управление и диспетчеризацию.

    В состав блочного теплового пункта могут входить как индивидуальные тепловые пункты, так и центральные тепловые пункты.

    Основные системы теплоснабжения потребителей в составе теплового пункта

    • система горячего водоснабжения (открытая или закрытая схема подключения)
    • система отопления (зависимая или независимая схема подключения)
    • система вентиляции

    Типовые схемы подключения систем в тепловых пунктах

    Типовая схема подключения системы ГВС


    Типовая схема подключения системы отопления


    Типовая схема подключения системы ГВС и отопления


    Типовая схема подключения системы ГВС, отопления и вентиляции


    В состав теплового пункта также входит система холодного водоснабжения, но она не является потребителем тепловой энергии.

    Принцип работы тепловых пунктов

    Тепловая энергия поступает на тепловые пункты от теплогенерирующих предприятий посредством тепловых сетей - первичных магистрельных теплосетей. Вторичные, или разводящие, теплосети соединяют ТП уже с конечным потребителем.

    Магистральные теплосети обычно имеют большую протяженность, соединяя источник тепла и непосредственно тепловой пункт, и диаметр (до 1400 мм). Зачастую магистральные тепловые сети могут объединять несколько теплогенерирующих предприятий, что увеличивает надежность обеспечения потребителей энергией.

    Перед поступление в магистральные сети вода проходит водоподготовку, которая приводит химические показатели воды (жесткость, рН, содержание кислорода, железа) в соответствии с нормативными требованиями. Это необходимо для того, чтобы снижать уровень коррозионного влияния воды на внутреннюю поверхность труб.

    Разводящие трубопроводы имеют сравнительно малую протяженность (до 500 м), соединяя тепловой пункт и уже конечного потребителя.

    Теплоноситель (холодная вода) поступает по подающему трубопроводу в тепловой пункт, где проходит через насосы системы холодного водоснабжения. Далее он (теплоноситель) использует первичные подогреватели ГВС и подается в циркуляционный контур системы горячего водоснабжения, откуда поступает уже к конечному потребителю и обратно в ТП, постоянно циркулируя. Для поддержания необходимой температуры теплоносителя, он постоянно подогревается в подогревателе второй ступени ГВС.

    Система отопления - это такой же замкнутый контур, как и система ГВС. В случае возникновения утечек теплоносителя, его объем восполняется из системы подпитки теплового пункта.

    Затем теплоноситель поступает в обратный трубопровод и поступает опять на теплогенерирующее предприятие по магистральным трубопроводам.

    Типовая комплектация тепловых пунктов

    Для обеспечения надежной эксплуатации тепловых пунктов они поставляются со следующим минимальным технологическим оборудованием:

    • два пластинчатых теплообменника (паяные или разборные) для системы отопления и системы ГВС
    • насосная станция для перекачки теплоносителя к потребителю, а именно - к отопительным приборам здания или сооружения
    • система автоматического регулирования количества и температуры теплоносителя (датчики, контроллеры, расходомеры) для контроля параметров теплоносителя, учета тепловых нагрузок и регулирования расхода
    • система водоподготовки
    • технологическое оборудование - запорная арматура, обратные клапаны, контрольно-измерительные приборы, регуляторы

    Следует отметить, что комплектация теплового пункта технологическим оборудованием во многом зависит от схемы подключения системы горячего водоснабжения и схемы подключения системы отопления.

    Так, например, в закрытых системах устанавливаются теплообменники, насосы и оборудование водоподготовки для дальнейшего распределения теплоносителя между системой ГВС и системой отопления. А в открытых системах устанавливаются смесительные насосы (для смешения горячей и холодной воды в нужной пропорции) и регуляторы температуры.

    Наши специалисты оказывают весь комплекс услуг, начиная с проектирования, производства, поставки, и заканчивая монтажом и пуско-наладкой тепловых пунктов различной комплектации.

    При централизованном теплоснабжении тепловой пункт может бытьместным - индивидуальным (ИТП) для теплопотребляющих систем конкретного здания игрупповым - центральным (ЦТП) для систем группы зданий. ИТП размещается в специальном помещении здания, ЦТП чаще всего представляет собой отдельно стоящее одноэтажное строение. Проектирование тепловых пунктов ведётся в соответствии с нормативными правилами.
    Роль теплогенератора при независимой схеме присоединения теплопотребляющих систем к наружной тепловой сети выполняет водяной теплообменник.
    В настоящее время применяют так называемые скоростные теплообменники различных типов. Кожухотрубный водяной теплообменник состоит из стандартных секций длиной до 4 м. Каждая секция представляет собой стальную трубу диаметром до 300 мм, внутрь которой помещены несколько латунных трубок. В независимой схеме системы отопления или вентиляции греющая вода из наружного теплопровода пропускается по латунным трубкам, нагреваемая - противотоком в межтрубном пространстве, в системе горячего водоснабжения нагреваемая водопроводная вода пропускается по трубкам, а греющая вода из тепловой сети - в межтрубном пространстве. Более совершенный и значительно более компактный, пластинчатый теплообменник, набирается из определённого количества стальных профилированных пластин. Греющая и нагреваемая вода протекает между пластинами противотоком или перекрёстно. Длину и число секций кожухотрубного теплообменника или размеры и число пластин в пластинчатом теплообменнике определяют в результате специального теплового расчета.
    Для нагревания воды в системах горячего водоснабжения, особенно в индивидуальном жилом доме, больше подходит не скоростной, а емкостной водонагреватель. Его объём определяется исходя из расчётного количества одновременно работающих точек водоразбора и предполагаемых индивидуальных особенностей водопотребления в доме.
    Общим для всех схем, является применение насоса для искусственного побуждения движения воды в теплопотребляющих системах. В зависимых схемах насос помещают на тепловой станции, и он создаёт давление, необходимое для циркуляции воды, как в наружных теплопроводах, так и в местных теплопотребляющих системах.
    Насос, действующий в замкнутых кольцах систем, заполненных водой, не поднимает, а только перемещает воду, создавая циркуляцию, и поэтому называется циркуляционным. В отличие от циркуляционного насоса насос в системе водоснабжения перемещает воду, поднимая её к точкам разбора. При таком использовании насос называют повысительным.
    В процессах заполнения и возмещения потери (утечки) воды в системе отопления циркуляционный насос не участвует. Заполнение происходит под воздействием давления в наружных теплопроводах, в водопроводе или, если этого давления недостаточно, с помощью специального подпиточного насоса.
    До последнего времени циркуляционный насос включался, как правило, в обратную магистраль системы отопления для увеличения срока службы деталей, взаимодействующих с горячей водой. Вообще же для создания циркуляции воды в замкнутых кольцах местоположение циркуляционного насоса безразлично. При необходимости несколько понизить гидравлическое давление в теплообменнике или котле насос может быть включён и в подающую магистраль системы отопления, если его конструкция рассчитана на перемещение более горячей воды. Все современные насосы обладают этим свойством и устанавливаются чаще всего после теплогенератора (теплообменника). Электрическая мощность циркуляционного насоса определяется количеством перемещаемой воды и развиваемым при этом давлением.
    В инженерных системах, как правило, применяют специальные бесфундаментные циркуляционные насосы, перемещающие значительное количество воды и развивающие сравнительно небольшое давление. Это бесшумные насосы, соединённые в единый блок с электродвигателями и закрепляемые непосредственно на трубах. В систему включают два одинаковых насоса, действующих попеременно: при работе одного из них второй находится в резерве. Запорная арматура (задвижки или краны) до и после обоих насосов (действующего и бездействующего) постоянно открыты, особенно, если предусмотрено автоматическое их переключение. Обратный клапан в схеме препятствует циркуляции воды через бездействующий насос. Легко монтируемые бесфундаментные насосы иногда устанавливают в системах по одному. При этом резервный насос хранят на складе.
    Понижение температуры воды в зависимой схеме со смешением до допустимой происходит при смешении высокотемпературной воды с обратной (охлаждённой до заданной температуры) водой местной системы. Снижение температуры теплоносителя осуществляется путем смешения обратной воды от инженерных систем при помощи смесительного аппарата - насоса или водоструйного элеватора. Насосная смесительная установка имеет преимущество перед элеваторной. Ее КПД выше, в случае аварийного повреждения наружных теплопроводов возможно, как и при независимой схеме присоединения, сохранение циркуляции воды в системах. Смесительный насос можно применять в системах со значительным гидравлическим сопротивлением, тогда как при использовании элеватора потери давления в теплопотребляющей системе должны быть сравнительно небольшими. Водоструйные элеваторы получили широкое распространение благодаря безотказному и бесшумному действию.
    Внутреннее пространство всех элементов теплопотребляющих систем (труб, отопительных приборов, арматуры, оборудования и т. д.) заполнено водой. Объём воды в процессе эксплуатации систем претерпевает изменения: при повышении температуры воды он увеличивается, при понижении температуры - уменьшается. Соответственно изменяется внутреннее гидростатическое давление. Эти изменения не должны отражаться на работоспособности систем и, прежде всего, не должны приводить к превышению предела прочности любых их элементов. Поэтому в систему вводится дополнительный элемент - расширительный бак.
    Расширительный бак может бытьоткрытым, сообщающимся с атмосферой, и закрытым, находящимся под переменным, но строго ограниченным избыточным давлением. Основное назначение расширительного бака - приём прироста объёма воды в системе, образующегося при её нагревании. При этом в системе поддерживается определённое гидравлическое давление. Кроме того, бак предназначен для восполнения убыли объёма воды в системе при небольшой утечке и при понижении её температуры, для сигнализации об уровне воды в системе и управления действием подпиточных устройств. Через открытый бак удаляется вода в водосток при переполнении системы. В отдельных случаях открытый бак может служить воздухоотводчиком из системы.
    Открытый расширительный бак размещают над верхней точкой системы (на расстоянии не менее 1 м) в чердачном помещении или в лестничной клетке и покрывают тепловой изоляцией. Иногда (например, при отсутствии чердака) устанавливают неизолированный бак в специальном утепленном боксе (будке) на крыше здания.
    Современная конструкция закрытого расширительного бака представляет собой стальной цилиндрический сосуд, разделённый на две части резиновой мембраной. Одна часть предназначена для воды системы, вторая заполнена в заводских условиях инертным газом (обычно азотом) под давлением. Бак может быть установлен непосредственно на пол котельной или теплового пункта, а также закреплён на стене (например, при стеснённых условиях в помещении).
    В крупных теплопотребляющих системах группы зданий расширительные баки не устанавливаются, а гидравлическое давление регулируется при помощи постоянно действующих подпиточных насосов. Эти насосы также возмещают обычно имеющие место потери воды через неплотные соединения труб, в арматуре, приборах и других местах систем.
    Помимо рассмотренного выше оборудования в котельной или тепловом пункте размещаются устройства автоматического регулирования, запорно-регулирующая арматура и контрольно-измерительные приборы, с помощью которых обеспечивается текущая эксплуатация системы теплоснабжения. Используемая при этом арматура, а также материал и способы прокладки теплопроводов рассмотрены в разделе "Отопление зданий".